A STRINGENT UPPER LIMIT OF THE H2O2 ABUNDANCE IN THE MARTIAN ATMOSPHERE

T. Encrenaz, B. Bezard, *Observatoire de Paris (therese.encrenaz@obspm.fr)*, **T. K. Greathouse, J. H. Lacy** *Austin, USA,* **S. K. Atreya, A. S. Wong**, *University of Michigan, USA,* **M. J. Richter**, *University of California, Davis, USA*

INTRODUCTION:

Hydrogen peroxide, H_2O_2 is an important product of odd-hydrogen chemistry in the Martian atmosphere (Parkinson and Hunten, 1972). Its formation is believed to come from the combination of two HO_2 radicals :

 $\begin{array}{lll} \mathrm{H} + \mathrm{O}_2 + \mathrm{CO}_2 & \rightarrow & \mathrm{HO}_2 + \mathrm{CO}_2 \\ \mathrm{HO}_2 + \mathrm{HO}_2 & \rightarrow & \mathrm{H}_2\mathrm{O}_2 + \mathrm{O}_2 \end{array}$

As a result, $\mathrm{H}_2\mathrm{O}_2$ is expected to be globally correlated with $\mathrm{H}_2\mathrm{O}$

The presence of H_2O_2 at the Martian surface has been suggested as a possible interpretation of the positive response of the Viking Labeled Release life science experiment (Levin and Staat, 1988; Hugenin, 1982)

However, H_2O_2 has never been detected so far. An upper limit of 1.5 10^{-7} was derived by Bjoraker et al. (1987) using infrared high-resolution spectroscopy around 8 μ m. This limit was later lowered down to 3 10^{-8} (or 7.5 10^{15} cm⁻²) for Ls = 222° and [H₂O] = 10 pr- μ m by Krasnopolsky et al.(1997) using the same technique. This value was still compatible with the predictions of current photochemical models, using globally-averaged conditions, and a mean water vapor column density of 10 pr- μ m (Krasnopolsky, 1993, 1995; Atreya and Gu, 1994; Nair et al., 1994).

SEARCH FOR H₂O₂ WITH TEXES/IRTF

On February 2-3, 2001, we used the TEXES highresolution mid-IR grating spectrograph at the 3m-NASA Infrared Telescope Facility (IRTF) (Lacy et al., 2002) to search for H_2O_2 in the Martian atmosphere. The selected spectral range was 1226-1236 cm⁻¹and the spectral resolution was 0.017 cm⁻¹. The pixel size was 0.3 arcsec.

At the date of observation, the Ls value was 112° . The Sub-Earth-Point latitude was $+12^{\circ}$, and the Sub-Solar-Point latitude was $+24^{\circ}$. These conditions were thus optimized to search for H_2O_2 , as the water vapor content was expected to be maximum in the northern hemisphere.

The Mars diameter was 6.4 arcsec. We positioned

the slit (of 6 arcsec length and 1.1 arcsec width) toward the northern hemisphere in order to include the northern limb. As the data were obtained in the middle of a Jupiter run, the slit angle (-12°), however, was not optimized, as it corresponded to the Jupiter polar axis direction, while the north polar angle of Mars was 37°.

Two series of data were obtained, the first one of 7 minutes, with the slit in a fixed position (Feb. 2, 2001), an the second one of 8 minutes, with the slit scanning the northern hemisphere (Feb. 3, 2001). No H_2O_2 spectral signature was detected. We made 3 sets of summations according to the latitudinal range: 10N-40N, 40N-60N and 0-90N.

DATA ANALYSIS AND MODELLING

The synthetic spectrum of Mars at 1226-1236 cm⁻¹ has been modelled using atmospheric parameters inferred from the fit of CO₂ lines. A mean surface pressure of 7 mbar was used. The thermal profile was described by 3 parameters, the surface pressure Ts, the temperature at z = 0 km(To) and the temperature at $z=20 \text{ km}(\text{T}_{20})$. These parameters are indicated in Table 1. Six H₂O₂ transitions, free from CO₂ absorption, have been selected. The Mars spectra around these frequencies, taken over a bandwidth of 0.07 cm⁻¹, have been co-added and compared to the synthetic model. The H₂O₂ upper limits were derived from a second-order polynomial fit.

Our results (2- σ upper limits) are summarized in Table 1.

Data set	1	2	3
Date	Feb. 2, 01	Feb. 3, 01	Feb. 3, 01
Time	16 :32 UT	16 :47 UT	16 :47 UT
Obs. time (s)	2332	1134	648
Latitude range	10N-40N	0-90N	40N-60N
$[H_2O](pr-\mu m)$	20	30	40
Ts (K)	240	230	230
To (K)	235	225	225
$T_{20}(K)$	180	170	170
Air mass factor	1.25	1.6	1.6
Mean $q(H_2O_2)$	6 10 ⁻⁹	4 10 ⁻⁹	6 10 ⁻⁹
$N(H_2O_2)(cm^{-2})$	$1.2 \ 10^{15}$	9 10 ¹⁴	$1.1 \ 10^{15}$

It should be noted that our determination is not sensitive to the vertical distribution of H_2O_2 . The column density is the only retrieved parameter. Our lowest upper limit (0-90N) is 8 times lower than the upper limit of Krasnopolsky et al., 1997 ([H₂O₂] < 3 10⁻⁸ (2- σ) for a mean H₂O abundance of 10 pr- μ m). It is also significantly lower(by a factor of 2.5 to 10) than the predictions derived from current global 1-D photochemical models : Shimazaki, 1989 (2.2 10¹⁵ cm⁻²); Krasnopolsky, 1993 (3.8 10¹⁵ cm⁻²); Nair et al., 1994 (2.4 10¹⁵ cm⁻²); Atreya and Gu, 1994 (10¹⁶ cm⁻²); Krasnopolski, 1995 (4-6 10¹⁵ cm⁻²); Clancy and Nair, 1996 (10¹⁶ cm⁻², i.e. 2 10⁻⁹ @ 20 km)

A NEW PHOTOCHEMICAL MODEL

We have developed a new photochemical model which takes into account the exact geometry, season and insolation of our observations.

-Effect of low dust opacity :

If τ_D = 0.2 (usually 0.4 in global models), then the H_2O_2 abundance is reduced by 20%

-Change in the eddy diffusion coefficient : If $K = 10^7 \text{ cm}^2 \text{s}^{-1}$ (usually 10⁶), then the H₂O₂ abundance is reduced by a factor 2

-Re-assessment of the rate constant of the HO_2 -> $\mathrm{H}_2\mathrm{O}_2$ reaction :

This effect reduces the $\rm H_2O_2$ abundance by 25%

-Use of the upper bound of the constant for HO_2 + OH reaction (removal mechanism for HO_2): then H_2O_2 is reduced by 25%

With all these changes, our new photochemical model predicts an H_2O_2 abundance of $1.3 - 1.5 \ 10^{15}$ cm⁻² (about 1.5 times higher than our upper limits).

CONCLUSIONS

Our upper limit of H_2O_2 is now below all "global" photochemical models ($H_2O = 10 \text{ pr-}\mu\text{m}$), while our measurement corresponds to conditions of maximum H_2O abundance. Adjusting atmospheric parameters (using in particular a high K value) allows to lower the H_2O_2 abundance in the models.

Observational constraints combined with a complete photochemistry-dynamics model would be helpful in a better understanding of the composition, structure and evolution of the Martian atmosphere.

REFERENCES

Atreya S K and Gu Z, 1994, J. Geophys. Res. 99,

13133

Bjoraker G L et al., 1987, BAAS 19, 818

Clancy R T and Nair H, 1996, J. Geophys. Res. 101, 12785

Huguenin R L, 1982, J. Geophys. Res. 87, 10069

Krasnopolsky V A, 1993, Icarus 101, 303

Krasnopolsky V A, 1995 J. Geophys. Res. 100, 3263

Lacy J H et al., 2002, Pub. Ast. Soc. Pac. 114, 153

Levin G V and Straat P A, 1988, in «The NASA

Mars Conference », B. Reiber edt., Univelt, p. 187

Nair H et al., 1994, Icarus 111, 124

Parkinson T D and Hunten D M, 1972, J. Atm. Sci. 29, 1380