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The wealth of atmospheric data from the Mars Global Sur-
veyor (MGS) mission affords us an unprecedented opportunity
to test our theoretical knowledge of the physical properties and
dynamical state of the atmosphere of another planet. The pri-
mary tool for translating between observable quantities (like
asynoptically measured infrared radiances) and meteorological
variables (like winds and temperatures) that may be computed
by a general circulation model (GCM) is data assimilation.
This term encompasses a number of related techniques by
which data are used to determine a statistical best-fit state of
a predictive model. In the Martian context, where many sig-
nificant components of the climate system have never been
directly observed, data assimilation is an important part of the
scientific discovery process.

The formulation of meteorological data assimilation is
now becoming standardized [Ide et al., 1997]. In terms of oper-
ator notation, we represent the predictive dynamical model by
M and the observation operator (a forward model that projects
from a model’s state into the space of observable variables) by
H. A vector of observations is given asy and the model state
control vector byx. The variational formulation of the data
assimilation problem then seeks to minimize the cost function

J =
1

2
(x−b)TB−1(x−b)+ 1

2
(HMx−y)TR−1(HMx−y),

(1)
whereb is a previously computed model background state,B
is the model forecast error covariance matrix, andR is the
observational error covariance matrix. The minimum ofJ is
obviously obtained at

∂J/∂x = B−1(x−b)+MTHTR−1(HMx−y) = 0. (2)

Note that the matrix operatorM which represents the dy-
namical model need not be calculated explicitly. In practice,
M is a formally linearized version of the computer code—a
tangent linear model—which is used to calculate a model state
vector from a perturbation of the state at the previous step.
(When the model is a GCM, the accuracy of the linearized
dynamical core can be assessed quite precisely, since terms
in the equations of motion have known linear or quadratic
dependencies on the perturbations.)MT is similarly a for-
mally adjointed version of the tangent linear code [Talagrand,
1997]. It is tested by verifying that the adjoint definition
〈Mx,Mx〉 = 〈x,MTMx〉 is satisfied to machine precision.
Equation (2) is solved by iterative techniques (like the con-
jugate gradient or quasi-Newton methods) that make use of
the vectorsMx andMTMx but require no other information
about the operatorM itself.

It makes sense to distinguish between the practical use of
data assimilation in the terrestrial and Martian contexts. For
operational forecasting at numerical weather prediction cen-
ters, there is usually a very well characterized, high resolution

model available. The state of the atmosphere is also fairly
well predicted from previous forecasts. The amount of new
data at any forecast step is small compared to the number of
model variables. So, the solutionx of equations (1) and (2)
is generally quite close tob. The forecast error covariance
matrixB is typically used to impose a priori balances on the
solutions (which suppress such unwanted features as gravity
waves). This is necessary because the number of model de-
grees of freedom far exceeds the constraints imposed by the
data.

With the abundant data from the MGS Thermal Emission
Spectrometer (TES), on the other hand, the number of new
independent observations per day is comparable to or greater
than the dimensionality of a usable global Mars GCM, so the
minimization problem of equation (1) is typically overdeter-
mined. Nearby observations can be averaged to produce statis-
tical estimates of the observational error covariance matrixR.
It is not generally possible to impose a priori balances (because
unbalanced components of the circulation—like atmospheric
tides—and large variations in surface pressure are so important
in Martian dynamics). However, these additional constraints
may not be required because of the overdetermined nature of
the problem. Also, the forecast errors may be large compared
to observational errors and equation (1) then reduces to aχ2

minimization where

χ2 = (HMx− y)TR−1(HMx− y). (3)

The influence of the forecast on the ultimate solution then
comes about primarily because it is the first guess in the it-
erative solution procedure. As experience in the solution of
equation (3) is gained, information about the structure ofB is
also accumulated. Note that the control vectorx may contain
model parameters and calibration constants along with the ini-
tial state of the atmosphere. So the assimilation can be used to
improve knowledge of the model and the observing system.

A Mars GCM especially suited for the assimilation of
MGS data has been developed [Houben, 1999]. It is a form of
the baroclinic spectral model that has long been used in terres-
trial meteorology [Bourke et al., 1977; Haltiner & Williams,
1980; Krishnamurti et al., 1998]. The model conveniently
divides the terms in the equations of motion into linear and
higher order terms. While this is done primarily to enable a
semi-implicit integration scheme that allows for longer time
steps, this treatment also speeds the production and testing of
the required linear tangent model. The spectral formulation
allows for an easy truncation of the model to low order (i.e.,
to zonal wavenumber 6) which corresponds to the observing
pattern of the MGS orbit. With 16 Legendre functions in lat-
itude and 16 vertical levels, the model has of order 10,000
prognostic variables that must be specified by the assimilation
procedure.

The baroclinic spectral model uses a terrain-following
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sigma coordinate in the vertical direction. This allows the
MOLA topography to be incorporated in the surface boundary
condition. A bulk Richardson number-based boundary layer
scheme parameterizes surface-atmosphere interactions.

The base model uses a simplified Newtonian relaxation ra-
diative forcing scheme (with a parameterized diurnal cycle), as
has been used in climate modeling studies of Mars [Haberle et
al., 1997] where the speed of integration is more important than
the detailed simulation of atmospheric eddies. This is clearly
not appropriate for data assimilation where the amplitudes and
phases of wave modes are of the utmost importance. It would
be theoretically possible to specify the diabatic forcing of our
GCM with a full radiative transfer code (and, of course, a
comprehensive boundary layer scheme). However, this would
require detailed knowledge of the distribution of atmospheric
tracers like dust, water vapor, and associated clouds. Even the
extensive MGS observations are not adequate to specify all of
these parameters based on current models. (Development of
tracer assimilation models is an active field of research.) In-
stead, we have chosen an innovative approach to determining
the proper diabatic forcing for our GCM.

Rather than specifying the diabatic forcing of the Martian
atmosphere, we have included it (along with the initial tem-
perature, streamfunction, divergence, and surface pressure) as
part of the control vectorx that is solved by the assimilation
procedure. This inclusion of forcing in the control vector is
equivalent to using the model as a weak constraint on the as-
similation (or the assumption of an imperfect model) [Courtier,
1997]. This is quite appropriate for our current state of knowl-
edge of the Martian atmosphere. Without this approach, we
would be confronted with the problem that while the diabatic
forcing is poorly known, the atmosphere responds rapidly to
the specified forcing. It would therefore be difficult to steer
the model towards the observations (rather than back to the
original model state).

The TES Team have kindly provided temperature retrievals
for one detector for 630 sols during the MGS mapping year.
(For convenience, a “sol” is a period of 12 MGS orbits, a
bit shorter than the standard definition.) In order to obtain
good characterizations of the data, temperature profiles were
averaged over thirty second intervals (during which time MGS
travels approximately 1.5 degrees in latitude) and standard de-
viations were computed (to be used as statistical weights). This
dataset has been used (with our baroclinic spectral model) in
theχ2 variational assimilation scheme described above (equa-
tion [3]). Analyzed temperature fields agree with the retrievals
to about 2 K. One-sol are accurate to about 3.5 K on the sun-
lit parts of the planet (where TES retrievals are thought to be
more accurate. The question of how well the assimilation of
diabatic forcing works is addressed by the biases in the 1-sol
forecasts. Since the total radiative forcing is on the order of
10 K/day, small biases in the forecasts (less than 1 K) indicate
that the assimilated forcings are reasonable.

Given the success in assimilating TES retrieved temper-
atures, a forward model for the prediction of TES radiances

based on baroclinic spectral model temperature profiles has
been developed. The model resembles that used by Conrath et
al. [2000] (utilizing correlatedk’s, etc.), but the constraints for
retrieval of the spectra come from the data assimilation cost
function rather than any ab initio assumptions. The radiances
in the wings of the 15 micrometer band are quite sensitive
to surface temperature, so a sophisticated ground temperature
prediction model is required. Thus albedo and thermal inertia
are included in the control vector for radiance assimilations.
Agreement with observations is obtained to within about 1
erg/cm2/s/sr/cm−1. Based on the successful development of
these data assimilation techniques for use with MGS data, a
wide range of studies comparing the results from different
experiments and examining the resulting meteorology are pos-
sible.
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