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With the proliferation of atmospheric observing in-
struments on and around Mars, some consideration should
be given to techniques that facilitate intercomparison of
their measurements and results. A typical challenge
might be to use the measurements of one instrument to
infer what the other would observe. In a pilot study of a
terrestrial problem of this type, Srivastava et al. [2005]
attempted to infer MODIS channel 6 (1.6 � m) radiances
— which are useful in discriminating clouds from snow-
covered terrain — from 5 other MODIS channels (1,
2, 20, 30, and 31), which correspond well to AVHRR
channels (with much longer time coverage). Three ma-
chine learning methods (essentially nonlinear regression
methods) were used. The most successful was a multi-
layer perceptron, a type of neural network. Neural net-
works have been previously used for nonlinear principal
component analyses of meteorological datasets [Hsieh,
2001]. However, for many purposes a straightforward
linear principal component analysis is adequate.

A principal component analysis determines the eigen-
values and eigenvectors of the correlation matrix of a
system. Typically, only a few of the eigenvalues are
large and the corresponding eigenvectors — usually re-
ferred to as empirical orthogonal functions or EOFs in
the meteorological context — represent the most impor-
tant modes of variation of the system. Such EOFs have
been used by meteorologists for some 50 years [Lorenz,
1956] to reduce the dimensionality of the problem for
analysis. Important climatic oscillations like ENSO (El
Niño - Southern Oscillation) and the North Atlantic Os-
cillation are EOFs of the Earth’s climate system. Re-
cently, Martinez-Alvarado et al. [2005] have begun to
apply such an analysis to Mars GCM output.

Extended empirical orthogonal functions (EEOFs)
include not only spatial correlations, but correlations
across the time dimension as well [Weare and Nasstrom,
1982] and are therefore keys to the predictability of the
system. There have thus been a number of efforts to pre-
dict the evolution of terrestrial SST anomalies in general
[Smith et al., 1996; Aires and Chedin, 2000] and ENSO
in particular [Roulston and Neelin, 2003] with EOFs. As
a rule, these have been disappointing. Since the predic-
tion of future meteorological variables based on EEOFs
is mathematically equivalent to the virtual sensor prob-
lem of inferring unobserved variables using EOFs —
and both procedures may be valuable in martian studies
— it is worth examining the computational details of the
problem for clues as to when success or failure is to be
expected.

Correlation Matrix for MODIS Channels

1 2 6 20 30 31
1 1. .9980 .6287 .8778 .8785 .8784
2 .9980 1. .6564 .8786 .8774 .8773
6 .6287 .6564 1. .7369 .6979 .6984
20 .8778 .8786 .7369 1. .9977 .9977
30 .8785 .8774 .6979 .9977 1. 1.
31 .8784 .8773 .6984 .9977 1. 1.

We make use of the MODIS correlation matrix of
Srivastava et al. [2005]. Only 3 eigenvalues of the sys-
tem contribute any significant variance (Figure 1). The
corresponding eigenspectra are shown in Figure 2. The
implications of the principal component analysis are that
all MODIS spectra can be decomposed into a linear com-
bination of these EOFs. The virtual sensor problem is to
determine that decomposition with incomplete informa-
tion (i.e., when the radiance in channel 6 is unknown).
This problem is mathematically straightforward. The
correlation matrix � is diagonalized as
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where
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is a diagonal matrix of eigenvalues and
�

is the
orthonormal matrix whose columns are the eigenvectors.
Any given spectrum is characterized by a state vector �
whose elements are the coefficients of the corresponding
eigenvectors, and the spectrum � is given by
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To determine the radiance in an unobserved channel, �	� ,
we determine � by inverting the relation
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where �� is the (non-square) matrix obtained by remov-
ing the � th row (

� � ) of
�

. Finally, we find ��� from the
relation
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Using the generalized matrix inverse, we obtain a one-
line expression
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which is a simple linear transformation. However, the
usability of this formula depends on the conditioning of
the matrix inverse. It is easy to show that the matrix
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has an eigenvector
� $� with eigenvalue


 + � � � $� . The
condition number of the matrix is inversely proportional
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Figure 1: Cumulative fraction of variance explained by eigen-
functions of the MODIS correlation matrix. Only 3 modes are
required to reproduce this matrix.

Figure 2: Leading eigenspectra of the MODIS correlation ma-
trix. All these modes load significantly on channel 6, explain-
ing all of its variation.

to this eigenvalue. That means that when
� � � $��� 


and the variability of � � is well represented by the EOF
model, it is impossible to predict � � . On the other hand,
if � � loads heavily on an eigenvector that is not in the
model (i.e., that does not represent any significant vari-
ation in the observations), it should be easy to predict
from the other channels in the spectrum. This conclu-
sion gives a mathematical basis to the tradeoff between
analysis and prediction.

In the Srivastava et al. [2005] attempt to predict
MODIS channel 6, it is indeed the case that
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More complex nonlinear methods are thus the only hope
for solving this problem. On the other hand, the other
channels are easily predicted (as could be inferred di-
rectly from the correlation matrix).

An analysis of this type would be useful in distribut-
ing a meteorology network, say, on Mars. If redundancy
is desired, for example, locations should be chosen that
are highly correlated (at least in model simulations). If,
on the other hand, the intention of the network is to span
all of the atmospheric EOFs, uncorrelated locations will
be required.
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