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LMD data assimilation scheme for Mars
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Temperature assimilation

Zonal mean temperature vs. MCS observations, MY29 L; = 165 — 170
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Assimilation reduces distance between model temperatures and
observations, particularly in lower atmosphere.
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Effect of assimilation cycle length on temperature
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Challenges for Mars ensemble-based data assimilation

Ensemble, observations diverge Dust / water ice hard to assimilate with

as ensemble converges (unlike Earth) temperature: all are inter-dependent

Observation of dust
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Challenges for Mars ensemble data assimilation

What is un-Earthlike — (1) Covariance inflation

Reminder (Miyoshi, 2011):
Multiply background error variance at observations by «;
(dd") = o;HPHT 4 R where d = y — H(x?). KF updates ;.

Mars example

Imperfect Lorenz-96 [Miyoshi, 2011] (Ls = 150 — 180° temperature)
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Inflation parameter is > 1. Will occur when ensemble SD is
underestimated, but also when bias > observational error.



Challenges for Mars ensemble data assimilation

What is un-Earthlike — (2) Chaos and bias

Many observations
fall outside ensemble

Mars’ atmosphere is not
always chaotic

Rank histogram

Breedi h
reeding vector growth rates (L = 150 — 180°, temperature)
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[Newman et al., 2004]

Always +ve for Earth Bias +0.40, spread 0.50 [Hamill, 2001]

On Mars, model-obs distance can become dominated by model
error. Ensemble shrinks over time at certain times of year. Can't
be alleviated by chaos expanding ensemble to fill state space.
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Correction steps in ensemble data assimilation

E.g. Earth atmosphere/oceans, oil industry reservoir modelling
@ (1) Estimate, remove bias (forecast mean - observations # 0)
@ (2) Correct for model errors (additional matrix "big Q" in
background error covariance)
@ (3) Covariance inflation
Bias correction (method from Dee & Da Silva, 1998):
@ “Forecast bias” = "“Non-zero mean forecast error”
@ If forecast is biased, assigning more weight to observations will
reduce bias, but analysis will be noisier.
@ Unbiased Kalman filter:

% =%" + K(F° — H[X"]) K =PHT[HPHT +R]!
@ Where unbiased quantities are
%2 = x® — p? yozyo_bo )'zb:Xb—bb
@ Plug these in and, assuming observation operator is linear:

x* = x" + K[y® — Hx"] b* = b® 4+ K[b® — Hb"]
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Accounting for model error

Additive inflation (“big Q")
@ Parametrizes model errors by adding random perturbations
with a certain covariance structure to each ensemble member.
° xZ = XZ(k) + rqyx with qx = 0, r constant tuneable parameter.
e Background error covariance increases by Q = r?(qxq/ ) but
in a physically sensible way.

e Li+ (2009) [Earth atmosphere]: qx are randomly selected 6h
tendencies in NCEP reanalyses (i.e. the selection is random,
not the field). Geostrophically balanced.

e Lang+ (2017) [Solar wind]: “Q ... contains the relevant MHD
balances to perturb the ensemble with a model error term”

Parameter ensemble

@ Simplest form: Assign different values of unknown parameters
to different ensemble members (e.g. Greybush et al. 2012 for
dust opacities)



ACS assimilation

ESA/Roscosmos ExoMars Trace Gas Orbiter

Main goal: To search for rarified gases such as methane
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Inserted into Mars orbit 19 October 2016.
Reached final orbit 7 April 2018.

TGO viewing geometry
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Instruments:

] ACS (3 infrared spectrometers),

CASSIS (stereo visible imaging camera),
] FREND (neutron detector — subsurface),
NOMAD (3 infrared/UV spectrometers)
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Towards assimilation of ACS data

Thermal infrared channel (TIRVIM). Retrievals at LMD by Sandrine.

Initially: Atmospheric temperature profiles
Potentially: Surface temperatures, column dust opacity, column ice opacity

Local times vs MCS:
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Observation operator for TIRVIM (x* = x> + K(y® — /[x"]))

What would a retrieval (of e.g. T) look like if TIRVIM
observed the background x"?

@ This is the correct comparison with retrieved observations y°.
e Earlier work with MCS used (naive, but simpler) linear
interpolation to observation points.
@ [Alternative — assimilate radiances directly]
Correct form is observation- and instrument-specific.
Our TIRVIM assimilation scheme uses two steps:

@ Interpolate background to retrieval position and pressures, as
before (linear in x, t)

@ Use averaging kernels to retrieve what ACS would see:
% =xP 4+ A(x" — xP)

(Rodgers & Connor, 2003) Prior xP and averaging kernels A
are the same as for retrieval used to create observations_y°.



Current goals

Improving assimilation scheme

@ Work out what's going on with aerosols

@ Explicit correction of forecast biases

@ Ensemble of poorly constrained parameters
Assimilating ACS observations

@ Start working with calibrated observations

@ Set up pipeline to assimilate as new retrievals come in

@ Add T, dust and ice column-integrated quantities to
assimilation

Co-assimilation of ACS and MCS observations

See EPSC in September for progress...!



Talking points

Mars atmosphere fundamentally different from Earth's
(sometimes non-chaotic)

Ensemble schemes can struggle with this

Help and ideas are available from other fields, where non-chaotic
systems are more common

These three correction steps are well-established in more
fully-developed ensemble data assimilation:

@ (1) Estimate and remove bias
@ (2) Correct for model errors (“big Q")
°

(3) Covariance inflation
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