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Satellites in a CubeSat form factor could reach their',desired nodes und
few month if deployed from Mars orbit (Figure 3, inset). If the satellites
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type instrument in its standard design [9,10] and also serve as a relay sate
mission concept could be implemented during the decade of 2023-2032.
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Instrumentation: ,
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Measurements would be based on passive infrared
radiometry in limb and nadir geometry as demonstrated by
MCS [9] operating on since 2006. Profiles of
temperature, dust and ice with 5 km vertical
resolution have been retrieved from these measurements
[11,12] together with atmospherically corrected surface
temperature [13]. Eight spectral channels in the IR from 12-
45 um as well as a visible/near-IR channel would be used
to fulfill the measurement objectives (Figure 2, bottom).
Each channel would consist of a linear array of uncooled
thermopile detectors, which instantaneously measures a
radiance profile when vertically pointed at the limb. Most
channels are heritage from MRO/MCS. MCS capabilities
would be enhanced by adding a functional water vapor
channel at far-infrared wavelengths. The MCS technology
has high heritage. Deployment from a CubeSat would allow
descoping the MCS ¢ c’t ators as the CubeSat itself could
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be used for pointing the instrument at the limb, nadir, and
space. The design of the MCS telescope (Figure 2, top) is
very compact for the wavelength range it works in, fitting in
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