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Introduction:   
Data assimilation optimally combines spacecraft 

observations with short-term forecasts from an at-
mospheric model to produce a record of the atmos-
pheric state and, with an ensemble, its uncertainties.  
When performed retroactively for a long period of 
time, this sequence of analyses is termed a reanaly-
sis. The availability of Thermal Emission Spec-
trometer (TES) and Mars Climate Sounder (MCS) 
retrievals of temperature and aerosol opacities ena-
bles a comprehensive multiannual examination of 
Martian weather and climate, as data assimilation 
has proven to be an effective means of reconciling 
models with observations for Mars (Lewis et al., 
2007; Hoffman et al., 2010; Lee et al., 2011; Navarro 
et al., 2013).  We have used the Local Ensemble 
Transform Kalman Filter (LETKF), an advanced 
data assimilation system, to construct a sequence of 
synoptic maps (Figure 1) detailing the evolution of 
the temperature, wind, and surface pressure over the 
course of several Martian years (Mars Year 24 – 27, 
as well as during the MCS period). 

 
Data and Methodology: 
Spacecraft Observations. The first versions of 

our reanalysis assimilate Thermal Emission Spec-
trometer (TES) nadir temperature retrievals (Smith et 
al., 2001), downloaded from the Planetary Data Sys-
tem (PDS) website. Coverage is twice daily follow-
ing a polar orbit, although profiles are somewhat 
smoothed in the vertical. We also use column dust 
opacity data to constrain the model aerosol.  TES 
limb data are now available (Guzewich et al., 2013), 
extending coverage in the vertical. 

AER has produced retrievals of the TES radianc-
es using the Optimal Spectral Sampling (OSS) tech-
nique (Eluszkiewicz et al., 2008), and these have 
been evaluated compared to the PDS retrievals 
(Hoffman et al., 2012).  These retrievals also provide 
averaging kernel information, enabling the method 
of Hoffman (2010) for removing the influence of the 
prior profile and vertical error correlations.  This 
would also enable a pathway to interactive retrieval 
assimilation where forecasts from data assimilation 
provide an interactive prior, a technique that shares 
the advantages of radiance assimilation.  

We have also assimilated Mars Climate Sounder 
(MCS) retrievals, which provide increased vertical 
extent and resolution for temperature, as well as ver-
tical profiles of aerosols. 

Model Configuration and Aerosol Scenarios.  We 
use the GFDL Mars Global Climate Model (MGCM) 
for our simulations, currently with a lat/lon grid reso-

lution of 5x6 degrees and 28 vertical levels.  We 
employ several scenarios for aerosol.  In the first, the 
dust distribution is prescribed following a smoothly 
varying function of latitude and season, and the Con-
rath (1975) profile in the vertical.  In the second, the 
horizontal distribution matches the observed TES 
opacities as given by the Mars Climate Database 
dust scenarios (Montabone et al., 2013), while the 
vertical are still prescribed.  The third uses radiative-
ly active dust tracers in the MGCM with three size 
distributions to determine the vertical profile. Dust is 
added or subtracted to the lower atmosphere to 
match observed opacities, as an analogy to lifting 
and deposition (Kahre et al., 2009).   Several exper-
iments also employ radiatively active water ice 
clouds.   

Data Assimilation System. We have developed an 
Ensemble Mars Atmosphere Reanalysis System 
(EMARS) based on the LETKF (Hunt et al., 2007).  
Each ensemble member represents a potential at-
mospheric state, spanning a range of possibilities, 
with the ensemble mean being the most probable and 
the ensemble spread reflecting the uncertainty. The 
LETKF also has the ability to estimate and improve 
model parameters. 

We have improved the performance of this sys-
tem by using spatially varying adaptive inflation 
(Miyoshi 2011) to tune the ensemble spread to agree 
with error statistics and diurnal empirical bias cor-
rection based on the time-averaged analysis incre-
ment to account for model errors (Greybush et al., 
2012).   

 

Figure 1: NH Synoptic map of reanalysis fields for 
MY 24 (~Ls 199°). Plotted are (~3.5 km altitude) 
eddy temperature (K; shaded), eddy wind vectors 
(m/s), and eddy surface pressure (contoured, posi-
tive in gray, negative in black). Top is with an ana-
lytic, seasonal dust distribution, bottom is forced by 
observed TES opacities. While the general synoptic 
wave patterns are similar, differences in detail re-
flect the impact of aerosol. 
 



 

 

Results:  
Reanalysis Evaluation. We evaluate the skill of 

short term forecasts (0.25 sol) initialized from anal-
yses, and compare them to independent (in time) 
observations.  These show reduced RMSE compared 
to a freely running model simulation (Figure 2).  We 
have also performed a preliminary comparison with 
radio science profiles (Hinson et al., 2004), an inde-
pendent dataset with high vertical resolution. 

Sensitivity to Aerosols. Full-year TES experi-
ments employing fixed dust opacities, seasonally 
varying dust opacities, and observed TES dust opaci-
ties show that while realistic dust distributions are 
essential to match observed temperatures with a free 
run simulation, analyses from data assimilation are 
more robust with respect to imperfections in aerosol 
distribution. 

Traveling Waves. A consequence of successful 
reanalysis is a convergence of analyzed fields about 
a unique synoptic state.  To examine this evidence, 
we compare weather maps of eddy temperature, sur-
face pressure, and wind fields.  Preliminary results 
indicate that ensemble member forecasts from within 
a single experiment, as well as ensemble means from 
experiments using different aerosol assumptions, are 
much more similar to each other than to freely run-
ning ensemble forecasts. Traveling wave climatolo-
gies, as evidenced by Hovmoller diagrams, show a 
distinct climatology in the reanalysis compared to 
the free run forecast.   However, specific circulation 
features are dependent upon the correct aerosol spec-
ification (Figure 1). 

Predictability. We have used the bred vector 
technique (Greybush et al., 2013) as well as longer 
range (10 sol) forecasts to examine the predictability 
of the Martian atmosphere. In agreement with Rog-
berg et al. (2010), midlatitudes are baroclinically 
unstable, whereas in the tropics the model is stable 
and forced by aerosol radiative heating. We have 
found that varying the aerosol distribution among 
ensemble members improves the ensemble spread 
and improves the performance of the system. 

Mars Climate Sounder Assimilation. We have 
expanded our assimilation to include Mars Climate 
Sounder temperature retrievals (testing both along-
track and cross-track geometries) at several times of 
year, and compared biases to those from TES assimi-
lation.  Inclusion of radiatively active water ice 
clouds and 3 dust tracers have improved agreement 
between the MGCM and MCS data (Figure 3).  We 
have also conducted preliminary comparisons of free 
run simulations and MCS analysis dust and water ice 
vertical structure (Figure 4) to MCS profiles.  

Tides and Water Ice Clouds. Representation of 
the diurnal cycle is another important component of 
our reanalysis.  We found that using shorter (1-hour) 
as opposed to 6-hour assimilation windows more 
realistically reproduces all components of the ther-
mal tide in the atmosphere (Zhao et al., 2013).  Us-
ing data assimilation can also help compensate for 
missing aerosol heating (such as water ice clouds) in 
mid-levels of the model, creating diurnal and semi-
diurnal tidal amplitudes in better agreement with 
observational studies (e.g. Kleinböhl et al., 2013).  

Reanalysis Intercomparison. We have initiated 
an intercomparsion of EMARS with the Mars Analy-
sis Correction Data Assimilation (MACDA) reanaly-
sis (Montabone et al., 2011) during the TES period, 
with the goal of comparing both zonal mean temper-
ature structures and travelling wave activity.   

 
Conclusions:  
In this study we have: 
• Created an advanced data assimilation and 

numerical weather prediction system by coupling the 
Geophysical Fluid Dynamics Laboratory (GFDL) 
Mars Global Circulation Model (MGCM) with the 
Local Ensemble Transform Kalman Filter (LETKF). 

• Successfully assimilated both nadir (TES) 
and limb (MCS) Mars temperature profiles, compar-
ing to radio science profiles and other analyses. 

• Generated a multiannual reanalysis of at-
mospheric temperatures, winds, and surface pres-
sures, quantified their uncertainty using ensemble 
techniques, and examined predictability, traveling 
waves, thermal tides, and the impact of water ice 
clouds.  

 

Figure 2: RMSE of 0.25 sol forecasts from free run 
model simulations and analyses compared to TES 
observations during MY 24-25.  
 

Figure 3: Inclusion of radiatively active water ice 
cloud greatly increases agreement between MGCM 
free run and MCS observations. Zonal mean tempera-
tures (contours) and biases (shading) are plotted. 

 



• Compared free runs and assimilations with 
observations to identify model biases that should be 
addressed.  Aerosol distribution is a leading cause of 
bias (and RMSE) in analyses, and especially in fore-
casts, given the fast radiative time scale on Mars. 

Our ongoing plans include directly assimilating 
dust and water ice aerosol in the reanalysis. Recent 
investigations have demonstrated the important role 
of detached dust layers (Heavens et al., 2011; Guze-
wich et al., 2013) and water ice clouds (Wilson et al., 
2008; Madeleine et al., 2012) in the thermal structure 
on Mars. An improved depiction of aerosol horizon-
tal, vertical, and temporal distributions, and therefore 
heating rates, will improve the atmospheric state in 
the reanalysis, and subsequent forecasts.    We can 
also use data assimilation to estimate important 
model parameters, which may eventually lead to 
improvements in understanding and prediction of 
dust storms. 
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