EARLY MARS: RECONCILING CLIMATE AND GEOCHEMISTRY

R. Wordsworth^{1,2,*}, A. H. Knoll², J. Hurowitz³, M. Baum², B. Ehlmann^{4,5}, J. Head⁶, K. Steakley⁷ and F. Ding¹. ¹School of Engineering and Applied Sciences, Harvard University. ²Department of Earth and Planetary Sciences, Harvard University. ³Department of Geosciences, Stony Brook University. ⁴Division of Geological and Planetary Sciences, California Institute of Technology. ⁵Jet Propulsion Laboratory, NASA. ⁶Department of Geological Sciences, Brown University. ⁷Space Science and Astrobiology Division, NASA Ames Research Center / Bay Area Environmental Research Institute. ^{*}*rwordsworth@seas.harvard.edu*.

Introduction: The last few years has seen substantial progress on our understanding of the faint young Sun problem and the nature of Mars's early climate. None-theless, significant uncertainties remain. Here, we discuss some of our progress on the early Mars climate problem since the last Mars atmosphere workshop, with a focus on two issues: the degree to which the early climate was permanently vs. episodically warm, and the extent to which scenarios for warming can be reconciled with the rich geochemical record observed by both rovers and orbiters.

Observational evidence: Extensive geologic evidence indicates that 3-4 Ga, surface conditions on Mars were dramatically different, with multiple episodes of fluvial erosion, aqueous alteration and sediment deposition [1]. The most plausible explanation for this is greenhouse warming from a thicker early atmosphere, although the details continue to be debated [2,3]. Various analyses suggest that in total, between 10^4 and 10^7 years of warm conditions were required to erode observed valley networks, deposit sediment in craters and form weathering sequences [4-7]. In addition, abundant ancient exposures of unaltered igneous minerals such as olivine and the relative absence of surface carbonates on Mars indicate that large bodies of surface liquid water were likely not present over periods much longer than a few million years [8,9]. Today Mars' surface is highly oxidized, but its mantle appears more reduced than Earth's, and some Mars meteorites preserve non-zero sulfur massindependent fractionation (MIF) signatures [10], suggesting anoxic atmospheric intervals. Rover observations at both Meridiani Planum and Gale Crater have also shown strong variability in mineral redox chemistry [11], with oxidizing surface conditions around the Noachian-Hesperian boundary ca. 3.5 Gya (Figure 1) suggested by the presence of concentrated hematite and manganese oxide [11-13]. The manganese deposits in particular appear to require the simultaneous presence of liquid water and strong oxidants such as O₂, ultraviolet radiation or possibly chlorates [12,14].

Climate and water cycle modeling: Recent work indicates that a thicker CO_2 atmosphere combined with smaller amounts of reducing gas species (H₂, CH₄) can

warm early Mars to the melting point of liquid water [15-18]. In contrast, warm conditions in highly oxidized atmospheres appear much more difficult to achieve. Clouds (CO₂ or H₂O) may provide some additional warming, although not enough to warm early Mars alone given our current understanding of cloud microphysics (see also Ding et al., this conference). Adiabatic cooling under a thicker CO₂ atmosphere provides a recharge mechanism for valley network source regions, either as precipitating snow [2] or rainfall [19] (Figure 1).

Stochastic atmospheric evolution model: To investigate how these diverse strands of geologic evidence can be reconciled with climate modeling results, we have developed a stochastically forced atmospheric evolution model (Fig. 2). We represent the release of reducing gases to the atmosphere due to volcanism [15], meteorite impacts [16,17] and crustal alteration [17,20] in a generalized way by randomly sampling from a power law distribution. Escape of hydrogen and oxygen to space via diffusion-limited and non-thermal escape processes is also included, as is oxidative weathering of the crust. Water loss to space is constrained via D/H data. Changes in surface temperature over time due to greenhouse warming by CO2 and reducing gases are also taken into account. We find that the model produces rapid and repeated fluctuations between warmer, more reducing and colder, more oxidizing conditions during Mars' early history (Figs. 2-3), with integrated warm periods sufficient to match geomorphic observations for mean rates of reducing gas input in the range of upper limits from volcanism, impacts and crustal processes.

Figure 1: Schematic of the water-limited 'icy highlands' scenario for early Mars (from [2]).

Figure 2: Observations vs. stochastic evolution model predictions over Mars' history. A) Timeline of major events on the martian surface from geologic observations. B) Changes in the net redox state of the atmosphere vs. time due to the competing effects of episodic release of reducing gases, atmospheric escape and surface weathering. C) Corresponding surface temperature evolution and D) cumulative integral of time spent with surface temperature >273 K.

Figure 3: Integrated duration of warm intervals as a function of H fluxes into the martian atmosphere. Colored lines show the integrated warm period from 4.1 Gya onwards as a function of the average rate of reducing gas input to the atmosphere over the entire 4.5 Gy simulation interval. Colors indicate the assumed variability ratio (specifically, the maximum possible input rate in a 0.1 My interval relative to the time-varying mean value).

Sulfate, Hematite and Manganese Chemistry: We hypothesize that the increase in sulfate deposition from the Noachian into the Hesperian was also linked to changes in Mars's atmospheric composition through time, for three reasons. First, oxidation of the upper martian mantle could potentially have moderately increased the fraction of S outgassed by the Hesperian [21]. Second, preservation of evaporite deposits against later remobilization would have only been favored toward the waning stages of the Noachian, from 3.5 Ga onward [22]. Third, sulfate minerals can be converted to reduced minerals like pyrite or pyrrhotite when dissolved under reducing conditions, particularly during high temperature post-impact conditions that would have occurred frequently during the early to mid-Noachian. Redox fluctuations can also help explain the appearance of sedimentary hematite and manganese oxide deposits. Our model predicts intervals of elevated atmospheric oxygen throughout the Noachian and Hesperian. In these intervals, upper layers of the regolith would slowly oxidize via dry weathering reactions, formation of oxychlorine species and adsorption of volatile species like H2O2. During warming intervals, some of this regolith would have been transported as sediment to standing bodies of water. The extremely slow rate of reaction of $H_{2(aq)}$ with oxidized species like $\operatorname{Fe}^{3+}_{(aq)}$ [13,23] mean these sediments would have remained out of chemical equilibrium with the atmosphere, plausibly leading to the local formation within the sediments of oxidized minerals such as hematite over time. Warming of early Mars on 10⁴- 10^7 year timescales under O₂-rich atmospheric conditions is not currently predicted in state-of-the-art climate models, but if it did occur, it could also have led to the formation of diagenetic hematite and manganese in Hesperian sediments. In any case, shorter periods of warming (up to a few years) would still have occurred episodically when the atmosphere was O_2 -rich, via the mobilization of surface ice deposits by redox-neutral bolide impacts [24]. This would have provided additional routes for the formation, transport and deposition of highly oxidizing minerals, providing a plausible explanation for the Mn-rich fracture-filling materials in the Kimberley Formation at Gale Crater [12].

Conclusions and Future Directions: An episodically fluctuating scenario for Mars' chemical and climate evolution appears consistent with several key features of the planet's geological record. It also predicts formation scenarios for various aqueous minerals that can be tested further by upcoming rover missions and eventually by investigation of returned samples. In addition, future modeling work should investigate the atmospheric and aqueous chemistry of varying redox states on early Mars in greater detail.

References: [1] Carr., M. H. (2007), vol. 6. Cambridge University Press. [2] Wordsworth, R. (2016), Ann Rev Earth and Plan Sci, 44(1). [3] Haberle, R. M. et al. (2017), Cambridge University Press. [4] Hoke, M. R. T. et al. (2011), Earth Plan Sci Lett, 312(1):1–12. [5] Bishop, J. L. et al. (2018), Nat Astro, 2(3):206. [6] Fukushi, K. et al. (2019), Nat Comm, 10(1):1-11. [7] Kite, E. S. (2019), Space Sci Rev, 215(1), p. 10. [8] Niles, P. B. et al. (2013), Space Sci Rev, 174(1-4):301-328. [9] Ehlmann, B. L. and Edwards, C. S. (2014), Ann Rev Earth Plan Sci, 42:291-31. [10] Lorand, J.-P. et al. (2020), Meteorit Plan Sci, 55:2097-2116. [11] Hurowitz, J. A. et al. (2017) Science, 356, eaah6849. [12] Lanza, N. et al. (2016) Geophys Res Lett, 43:7398-7407. [13] Hurowitz, J. A. et al. (2010). Nat Geosci, 3:323. [14] Mitra, K. et al. (2020) AGU Fall Meeting 2020. [15] Ramirez, R. M. et al. (2014), Nat Geosci, 7(1):59-63. [16] Haberle, R. M. et al. (2019), Geophys. Res Lett, 46:13355-13362. [17] Wordsworth, R. et al. (2017), Geophys Res Lett, 44:665-671. [18] Turbet, M., Boulet, C. and Karman, T., 2020. Icarus, 346, p.113762. [19] Turbet, M. and Forget, F., 2021. arXiv preprint arXiv:2103.10301. [20] Chassefière, E. et al. (2016), Meteorit Plan Sci, 51(11):2234–2245. [21] Gaillard, F., et al. (2013), Space Sci Rev, 174:251-300. [22] Milliken, R. E., et al. (2009), Geophys Res Lett, 36:L11202. [23] Tosca, N. J., et al. (2018), Nat Geosci, 11:635-639. [24] Palumbo, A. M. & Head, J. W. (2018), Meteorit Plan Sci, 54:687-725.