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Introduction:  

Although present-day Mars is cold and dry with a 

low pressure of CO2 atmosphere and little amount 

of surface and subsurface H2O ice, decades of 

geochemical and geological observations have 

revealed that the atmospheric environment on early 

Mars was quite different from that of Mars today. 

Early Martian terrains were carved by numerous 

networks of valleys, indicating evidence that 

prolonged liquid water activity sculpted the ancient 

surface of Mars during the late Noachian and the 

early Hesperian (3.85–3.6 Ga). However, 

controversy remains over the source of liquid water, 

that is, rainfall [1-4] and snow/ice melting [5-9]. 

Depending on which scenario of the water source is 

chosen, the climate condition of early Mars would 

be quite different.  

 

 

Method:  

To explore the best climate scenario of early Mars, 

we performed several series of climate simulation 

of early Mars for long timescale by a combination 

of global climate model (PMGCM, Paleo-Mars 

Global Climate Model), global river model (CRIS, 

Catchment-based RIver Simulator) [10,11], and 

global ice sheet model (ALICE, Accumulation and 

ablation of Large-scale ICE-sheets with dynamics 

and thermodynamics) (see Figure 1). We assumed a 

CO2/H2O/H2 atmosphere with surface pressures of 

between 1 bar and 2 bar, H2 mixing ratios of 

between 0% and 6%, and obliquity of 40°. 

Geothermal heat flux was set to 55 mW m
-2

, which 

are representative of the late Noachian and the early 

Hesperian [12,13]. We defined the existence of a 

northern ocean and lakes in our model with the 

amount of corresponding to about 500 m global 

equivalent layer (GEL) at the initial state, and 

implemented a pre-True Polar Wander topography 

to investigate the global water cycle of early Mars 

before late Tharsis formation [14] (see Figure 2). 

We iterated the runs of the ALICE and 

PMGCM–CRIS coupled model several times over 

the course of 10
5
 Mars years to obtain the 

long–term equilibrium states for each condition of 

surface pressure and H2 mixing ratio.  

 

 

  

  
Figure 1. Schematic diagram of global river model 

CRIS [11] (top), and global ice sheet model ALICE 

(bottom).  

 

 

 
Figure 2. Pre-True Polar Wander topography and 

the initial distribution of ocean/lakes (in aqua) 

assumed in this study [11]. 

 

 

Results:  

We showed that climate on early Mars is classified 



into three conditions. First, when surface pressure 

and H2 mixing ratio were both high, climate on 

early Mars would be “warm and semi–arid”, 

meaning that global averaged temperature was 

above 273 K, and prolonged rainfall–fed river 

systems carved valleys on southern low to middle 

latitudes where the majority of valley networks are 

observed (see Figure 3). These valleys were formed 

within a relatively short geological timescale (~10
4
 

Mars years), which agrees with previous geological 

studies of valley network formation timescales 

(10
4
–10

6
 Mars years) [15-17]. Second, when 

surface pressure and H2 mixing ratio were both 

middle, climate on early Mars would be “cool and 

wet”, meaning that global averaged temperature 

was slightly below 273 K, but temperate–based ice 

sheets became widespread (see Figure 4). 

Subglacial meltwater–fed river systems carved 

valleys on southern low to middle latitudes within a 

relatively long geological timescale (~10
5
 Mars 

years) than “warm and semi–arid” case. Finally, 

when surface pressure and H2 mixing ratio were 

both low, climate on early Mars would be “cold and 

icy”, meaning that global averaged temperature was 

much below 273 K, and cold–based ice sheets 

became widespread. In both cases of “warm and 

semi–arid” and “cool and wet”, our river model 

CRIS produced valleys whose distributions agreed 

with more than half of the observed ones. Many 

river systems in the Noachian highlands are likely 

to have originated from either rainfall or subglacial 

meltwater. However, in just case of “cold and icy” 

scenario, there was almost no apparent surface 

liquid water activity, which is contradictory to 

observations. 

 

 

Conclusions:  

From our calculations and geological constraints for 

coexistence of fluvial and subglacial runoff systems, 

we conclude that early Martian climate could have 

experienced both “warm and semi–arid” and “cool 

and wet” situations depending on atmospheric 

amount of H2. However, some parts of modelled 

runoffs are discrepant with observed valley 

networks such as Margaritifer Terra. There is still a 

possibility that several valleys were produced by 

short-lived climatic warming, possibly through an 

increase in atmospheric greenhouse gas resulting 

from volcanism and meteorite events.  
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Figure 3. Annual averaged runoff (mm sol

-1
) with a 

H2 mixing ratio of 6% and surface pressure of 2 bar. 

Gray contours denote the topography, remapped to 

the present Martian topography with sea level of 

-2.54 km. 

 

 

 
Figure 4. Simulated global distributions of glacial 

thickness (m) in the equilibrium state with a H2 

mixing ratio of 3% and surface pressure of 2 bar. 

Gray contours denote the topography, remapped to 

the present Martian topography with sea level of 

-2.54 km. 
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