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Introduction:   
A number of operations on the surface of 

Mars benefit from knowledge of the wind : rego-
lith manipulation for sampling or solar array clean-
ing may have more favorable results under certain 
wind conditions, and flight of e.g. a helicopter 
may be risky in strong gusts. While it is impossi-
ble to reliably predict the instantaneous wind dur-
ing the turbulent early afternoon period purely as 
a function of time, a useful predictive degree of 
skill can be brought via time series analysis. Spe-
cifically, the turbulent afternoon is characterized 
by an alternation between stronger winds and  
weaker ones, presumably associated with the up-
draft walls and downwelling cores of boundary 
layer convection cells.  The scale of these circula-
tions introduces a characteristic timescale of the 
order of 5~20 minutes which defines correlations 
in the wind speed time series.  The autocorrelation 
function  (ACF) is above 0.5 for timescales less 
than about a minute , whereas the ACF is actually 
negative for 200-500s. These statistical features 
can be reproduced with simple Markov models, 
and can be exploited to improve the odds of oper-
ational success via logic of the form “attempt 2 
regolith manipulations separated by 8 minutes to 
maximize the likelihood that one is during low 
winds”. The existence of correlations in the wind 
time series may suggest some circumspection 
regarding autocorrelation results from seismic 
data.  

 
Data:   
We examine wind speed data from the dual-

boom TWINS (Temperature & Wind for InSight) 
instrument, part of InSight’s Auxiliary Payload 
Sensor Suite (APSS).  Wind measurements are 
acquired at a height of 1.2 m above the surface, at 
a cadence that may be typically 0.1 or 1 Hz. 

 
A quasiperiodic character can be discerned in 

the time series (Fig.1) – such periodicities have 
been noticed previously in Viking wind and seis-
mic data (Lorenz et al., 2017), and in InSight opti-
cal depth information (Lorenz et al., 2020) and 
wind and temperature data (Lorenz et al., 2021).  

 
Figure 1 : Wind speed time series on Sol 782. 
 
Analysis :   
The autocorrelation function (ACF) of a time 

series evaluates the relationship of values sepa-
rated by an interval termed the ‘lag’ and provides 
insights that are distinct from frequency analysis 
such as Fourier decomposition.   A white noise 
signal has an ACF that is unity for zero lag (0,1), 
and approximately zero for all other values, since 
white noise is uncorrelated – the signal at time 
(t+lag) has no dependence on what the signal 
happened to be at time (t).  A sinusoidal signal 
has a sinusoidal ACF, since the signal is perfectly 
equal to itself one cycle later, but perfectly anti-
correlated with itself half a cycle later (or one-and-
a-half etc.).   Most signals in dynamic systems 
have a fall-off from (0,1) that indicates some filter-
ing or ‘memory’ in the system and tails off to zero 
at large lag.  

 
Figure 2 :Autocorrelation of the time series in figure 1. 
Note the rapid fall-off, indicating the atmosphere loses 
~80% of its memory of the wind in about 150s. The neg-
ative region shows that if it  is windier than average at 
t ime zero, it  is actually more likely than not to be less 
windy than average 500-800s later. 
 
 



 

 
The ACF of the noontime wind signal for a repre-
sentative Sol (782) is shown in figure 2.  First, the 
correlation falls off to 0.5 at a lag of about 40s, 
and 0.2 at around 150s.  Thus after 2-3 minutes, 
the wind has largely ‘forgotten’ its initial value. 
 
What is most striking about the ACF, however, is 
that it does not just decay to zero, but overshoots 
to become negative – the signature of a qua-
siperiodic signal.  The negative section reaches 
only ~-0.1, and is around 200s wide.   

 
Markov Models:   
Crudely, the time series in figure 1 shows a bi-

modal distribution of values – sequences of low 
values interspersed by sequences of high values, 
or lulls and gusts respectively. Considering these, 
then, as two states, we can represent the time se-
ries by a Markov model.  This is a discrete system 
that at each timestep transitions randomly from 
one state into another (or remains in the same 
state) according to a set of probabilities called a 
transition matrix.  In this simple construct (a first-
order Markov model), the present system state is 
the only information retained by the system. 

The time series that results reflects the transi-
tion matrix.  If the probability of Lull --> Gust is 0.1  
then the probability of Lull --> 0.9, since the two 
must sum to unity (the state must either change to 
the other state, or remain the same). It follows 
then, that once the system falls into the Lull state, 
it will remain there for ~10 timesteps before the 
next gust occurs.   Similarly, if the Gust --> Lull 
probability is 0.5, then on average a gust lasts for 
2 timesteps, and the ‘duty cycle’ of gusts is  

 
Not coincidentally with the Mars gust applica-

tion, a two-state Markov model has been shown 
to be a reasonable representation of the presence 
or absence of dust devils on a terrestrial desert 
playa (Lorenz et al., 2018).  Since both Mars gusts, 
and the presence of dust devils, are physically 
associated with the upwelling sheets of warm air 
in the convecting planetary boundary layer, it is 
unsurprising that the same mathematical model 
has some success.  

 
Markov models can be constructed with a 

much finer discretization, e.g. states being defined 
as wind between 3.0 and 4.0 m/s, 4.0 to 5.0 m/s etc.  
Such models have been proposed for over two 
decades for wind energy forecasting (e.g. Sahin 
and Sen, 2001).  Much more elaborate variants can 

be developed, with multiple orders to provide 
longer memory in the system, or with ‘hidden’ 
variables. However, the clarity and simplicity of 
the first-order two-state is useful in the present 
application.  

 
Applications:   
The periodicity can be exploited for operations 

as described in the introduction. In particular, the 
temporal spacing of repeated operations can be 
optimized to maximize the chances of success.  
Similarly, conditional decision rules can be con-
structed, e.g. “Attempt operation once winds 
have dropped below 4 m/s if winds were >4m/s for 
4 minutes previously”. 

Some seismic analyses employ autocorrelation 
methods to look for echos at characteristic times, 
and to interpret these as subsurface reflectors. If 
the surface forcing by the atmosphere is itself 
quasiperiodic at the relevant periods, interpreta-
tion as internal structure may merit careful scruti-
ny.  
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