2017 .

(11 publications)

S. S. Limaye, S. Lebonnois, A. Mahieux, M. Pätzold, S. Bougher, S. Bruinsma, S. Chamberlain, R. T. Clancy, J.-C. Gérard, G. Gilli, D. Grassi, R. Haus, M. Herrmann, T. Imamura, E. Kohler, P. Krause, A. Migliorini, F. Montmessin, C. Pere, M. Persson, A. Piccialli, M. Rengel, A. Rodin, B. Sandor, M. Sornig, H. Svedhem, S. Tellmann, P. Tanga, A. C. Vandaele, T. Widemann, C. F. Wilson, I. Müller-Wodarg, and L. Zasova. The thermal structure of the Venus atmosphere: Intercomparison of Venus Express and ground based observations of vertical temperature and density profiles. Icarus, 294:124-155, 2017. [ bib | DOI | ADS link ]

The Venus International Reference Atmosphere (VIRA) model contains tabulated values of temperature and number densities obtained by the experiments on the Venera entry probes, Pioneer Venus Orbiter and multi-probe missions in the 1980s. The instruments on the recent Venus Express orbiter mission generated a significant amount of new observational data on the vertical and horizontal structure of the Venus atmosphere from 40 km to about 180 km altitude from April 2006 to November 2014. Many ground based experiments have provided data on the upper atmosphere (90-130 km) temperature structure since the publication of VIRA in 1985. The “Thermal Structure of the Venus Atmosphere” Team was supported by the International Space Studies Institute (ISSI), Bern, Switzerland, from 2013 to 2015 in order to combine and compare the ground-based observations and the VEx observations of the thermal structure as a first step towards generating an updated VIRA model. Results of this comparison are presented in five latitude bins and three local time bins by assuming hemispheric symmetry. The intercomparison of the ground-based and VEx results provides for the first time a consistent picture of the temperature and density structure in the 40 km-180 km altitude range. The Venus Express observations have considerably increased our knowledge of the Venus atmospheric thermal structure above ~40 km and provided new information above 100 km. There are, however, still observational gaps in latitude and local time above certain regions. Considerable variability in the temperatures and densities is seen above 100 km but certain features appear to be systematically present, such as a succession of warm and cool layers. Preliminary modeling studies support the existence of such layers in agreement with a global scale circulation. The intercomparison focuses on average profiles but some VEx experiments provide sufficient global coverage to identify solar thermal tidal components.

The differences between the VEx temperature profiles and the VIRA below 0.1 mbar/95 km are small. There is, however, a clear discrepancy at high latitudes in the 10-30 mbar (70-80 km) range. The VEx observations will also allow the improvement of the empirical models (VTS3 by Hedin et al., 1983 and VIRA by Keating et al., 1985) above 0.03 mbar/100 km, in particular the 100-150 km region where a sufficient observational coverage was previously missing. The next steps in order to define the updated VIRA temperature structure up to 150 km altitude are (1) define the grid on which this database may be provided, (2) fill what is possible with the results of the data intercomparison, and (3) fill the observational gaps. An interpolation between the datasets may be performed by using available General Circulation Models as guidelines.

An improved spatial coverage of observations is still necessary at all altitudes, in latitude-longitude and at all local solar times for a complete description of the atmospheric thermal structure, in particular on the dayside above 100 km. New in-situ observations in the atmosphere below 40 km are missing, an altitude region that cannot be accessed by occultation experiments. All these questions need to be addressed by future missions.

A. Pottier, F. Forget, F. Montmessin, T. Navarro, A. Spiga, E. Millour, A. Szantai, and J.-B. Madeleine. Unraveling the martian water cycle with high-resolution global climate simulations. Icarus, 291:82-106, 2017. [ bib | DOI | ADS link ]

Global climate modeling of the Mars water cycle is usually performed at relatively coarse resolution (200 - 300km), which may not be sufficient to properly represent the impact of waves, fronts, topography effects on the detailed structure of clouds and surface ice deposits. Here, we present new numerical simulations of the annual water cycle performed at a resolution of 1deg × 1deg (~ 60 km in latitude). The model includes the radiative effects of clouds, whose influence on the thermal structure and atmospheric dynamics is significant, thus we also examine simulations with inactive clouds to distinguish the direct impact of resolution on circulation and winds from the indirect impact of resolution via water ice clouds. To first order, we find that the high resolution does not dramatically change the behavior of the system, and that simulations performed at ~ 200 km resolution capture well the behavior of the simulated water cycle and Mars climate. Nevertheless, a detailed comparison between high and low resolution simulations, with reference to observations, reveal several significant changes that impact our understanding of the water cycle active today on Mars. The key northern cap edge dynamics are affected by an increase in baroclinic wave strength, with a complication of northern summer dynamics. South polar frost deposition is modified, with a westward longitudinal shift, since southern dynamics are also influenced. Baroclinic wave mode transitions are observed. New transient phenomena appear, like spiral and streak clouds, already documented in the observations. Atmospheric circulation cells in the polar region exhibit a large variability and are fine structured, with slope winds. Most modeled phenomena affected by high resolution give a picture of a more turbulent planet, inducing further variability. This is challenging for long-period climate studies.

L. J. Steele, M. R. Balme, S. R. Lewis, and A. Spiga. The water cycle and regolith-atmosphere interaction at Gale crater, Mars. Icarus, 289:56-79, 2017. [ bib | DOI | ADS link ]

We perform mesoscale simulations of the water cycle in a region around Gale crater, including the diffusion of water vapour in and out of the regolith, and compare our results with measurements from the REMS instrument on board the Curiosity rover. Simulations are performed at three times of year, and show that diffusion in and out of the regolith and adsorption/desorption needs to be taken into account in order to match the diurnal variation of relative humidity measured by REMS. During the evening and night, local downslope flows transport water vapour down the walls of Gale crater. When including regolith-atmosphere interaction, the amount of vapour reaching the crater floor is reduced (by factors of 2-3 depending on season) due to vapour diffusing into the regolith along the crater walls. The transport of vapour into Gale crater is also affected by the regional katabatic flow over the dichotomy boundary, with the largest flux of vapour into the regolith initially occurring on the northern crater wall, and moving to the southern wall by early morning. Upslope winds during the day transport vapour desorbing and mixing out of the regolith up crater walls, where it can then be transported a few hundred metres into the atmosphere at convergence boundaries. Regolith-atmosphere interaction limits the formation of surface ice by reducing water vapour abundances in the lower atmosphere, though in some seasons ice can still form in the early morning on eastern crater walls. Subsurface ice amounts are small in all seasons, with ice only existing in the upper few millimetres of regolith during the night. The results at Gale crater are representative of the behaviour at other craters in the mesoscale domain.

M. Turbet, F. Forget, J. W. Head, and R. Wordsworth. 3D modelling of the climatic impact of outflow channel formation events on early Mars. Icarus, 288:10-36, 2017. [ bib | DOI | arXiv | ADS link ]

Mars was characterized by cataclysmic groundwater-sourced surface flooding that formed large outflow channels and that may have altered the climate for extensive periods during the Hesperian era. In particular, it has been speculated that such events could have induced significant rainfall and caused the formation of late-stage valley networks. We present the results of 3-D Global Climate Model simulations reproducing the short and long term climatic impact of a wide range of outflow channel formation events under cold ancient Mars conditions. We find that the most intense of these events (volumes of water up to 107 km3 and released at temperatures up to 320 K) cannot trigger long-term greenhouse global warming, regardless of how favorable are the external conditions (e.g. obliquity and seasons). Furthermore, the intensity of the response of the events is significantly affected by the atmospheric pressure, a parameter not well constrained for the Hesperian era. Thin atmospheres (P 80 mbar) can be heated efficiently because of their low volumetric heat capacity, triggering the formation of a convective plume that is very efficient in transporting water vapor and ice at the global scale. Thick atmospheres (P 0.5 bar) have difficulty in producing precipitation far from the water flow area, and are more efficient in generating snowmelt. In any case, outflow channel formation events at any atmospheric pressure are unable to produce rainfall or significant snowmelt at latitudes below 40degN. As an example, for an outflow channel event (under a 0.2 bar atmospheric pressure and 45deg obliquity) releasing 106 km3 of water heated at 300 K and at a discharge rate of 109 m3 s-1 , the flow of water reaches the lowest point of the northern lowlands (around ~70degN, 30degW) after ~3 days and forms a 200 m deep lake of 4.2 × 106 km2 after ~20 days; the lake becomes entirely covered by an ice layer after ~500 days. Over the short term, such an event leaves 6.5 × 103 km3 of ice deposits by precipitation (0.65% of the initial outflow volume) and can be responsible for the melting of ~80 km3 (0.008% of the initial outflow volume; 1% of the deposited precipitation). Furthermore, these quantities decrease drastically (faster than linearly) for lower volumes of released water. Over the long term, we find that the presence of the ice-covered lake has a climatic impact similar to a simple body of water ice located in the Northern Plains.

For an obliquity of ~45deg and atmospheric pressures 80 mbar, we find that the lake ice is transported progressively southward through the mechanisms of sublimation and adiabatic cooling. At the same time, and as long as the initial water reservoir is not entirely sublimated (a lifetime of 105 martian years for the outflow channel event described above), ice deposits remain in the West Echus Chasma Plateau region where hints of hydrological activity contemporaneous with outflow channel formation events have been observed. However, because the high albedo of ice drives Mars to even colder temperatures, snowmelt produced by seasonal solar forcing is difficult to attain.

T. Bertrand and F. Forget. 3D modeling of organic haze in Pluto's atmosphere. Icarus, 287:72-86, 2017. [ bib | DOI | arXiv | ADS link ]

The New Horizons spacecraft, which flew by Pluto on July 14, 2015, revealed the presence of haze in Pluto's atmosphere that were formed by CH4/N2 photochemistry at high altitudes in Pluto's atmosphere, as on Titan and Triton. In order to help the analysis of the observations and further investigate the formation of organic haze and its evolution at global scales, we have implemented a simple parameterization of the formation of organic haze in our Pluto General Circulation Model. The production of haze in our model is based on the different steps of aerosol formation as understood on Titan and Triton: photolysis of CH4 in the upper atmosphere by Lyman-α UV radiation, production of various gaseous species, and conversion into solid particles through accumulation and aggregation processes. The simulations use properties of aerosols similar to those observed in the detached haze layer on Titan. We compared two reference simulations ran with a particle radius of 50 nm: with, and without South Pole N2 condensation. We discuss the impact of the particle radius and the lifetime of the precursors on the haze distribution. We simulate CH4 photolysis and the haze formation up to 600 km above the surface. Results show that CH4 photolysis in Pluto's atmosphere in 2015 occurred mostly in the sunlit summer hemisphere with a peak at an altitude of 250 km, though the interplanetary source of Lyman-α flux can induce some photolysis even in the Winter hemisphere. We obtained an extensive haze up to altitudes comparable with the observations, and with non-negligible densities up to 500 km altitude. In both reference simulations, the haze density is not strongly impacted by the meridional circulation. With No South Pole N2 condensation, the maximum nadir opacity and haze extent is obtained at the North Pole. With South Pole N2 condensation, the descending parcel of air above the South Pole leads to a latitudinally more homogeneous haze density with a slight density peak at the South Pole. The visible opacities obtained from the computed mass of haze, which is about 2-4 ×10-7 g cm-2 in the summer hemisphere, are similar for most of the simulation cases and in the range of 0.001-0.01, which is consistent with recent observations of Pluto and their interpretation.

F. Forget, T. Bertrand, M. Vangvichith, J. Leconte, E. Millour, and E. Lellouch. A post-new horizons global climate model of Pluto including the N2, CH4 and CO cycles. Icarus, 287:54-71, 2017. [ bib | DOI | ADS link ]

We have built a new 3D Global Climate Model (GCM) to simulate Pluto as observed by New Horizons in 2015. All key processes are parametrized on the basis of theoretical equations, including atmospheric dynamics and transport, turbulence, radiative transfer, molecular conduction, as well as phases changes for N2, CH2 and CO. Pluto's climate and ice cycles are found to be very sensitive to model parameters and initial states. Nevertheless, a reference simulation is designed by running a fast, reduced version of the GCM with simplified atmospheric transport for 40,000 Earth years to initialize the surface ice distribution and sub-surface temperatures, from which a 28-Earth-year full GCM simulation is performed. Assuming a topographic depression in a Sputnik-planum (SP)-like crater on the anti-Charon hemisphere, a realistic Pluto is obtained, with most N2 and CO ices accumulated in the crater, methane frost covering both hemispheres except for the equatorial regions, and a surface pressure near 1.1 Pa in 2015 with an increase between 1988 and 2015, as reported from stellar occultations. Temperature profiles are in qualitative agreement with the observations. In particular, a cold atmospheric layer is obtained in the lowest kilometers above Sputnik Planum, as observed by New Horizons's REX experiment. It is shown to result from the combined effect of the topographic depression and N2 daytime sublimation. In the reference simulation with surface N2 ice exclusively present in Sputnik Planum, the global circulation is only forced by radiative heating gradients and remains relatively weak. Surface winds are locally induced by topography slopes and by N2 condensation and sublimation around Sputnik Planum. However, the circulation can be more intense depending on the exact distribution of surface N2 frost. This is illustrated in an alternative simulation with N2 condensing in the South Polar regions and N2 frost covering latitudes between 35degN and 48degN. A global condensation flow is then created, inducing strong surface winds everywhere, a prograde jet in the southern high latitudes, and an equatorial superrotation likely forced by barotropic instabilities in the southern jet. Using realistic parameters, the GCM predict atmospheric concentrations of CO and CH4 in good agreement with the observations. N2 and CO do not condense in the atmosphere, but CH4 ice clouds can form during daytime at low altitude near the regions covered by N2 ice (assuming that nucleation is efficient enough). This global climate model can be used to study many aspects of the Pluto environment. For instance, organic hazes are included in the GCM and analysed in a companion paper (Bertrand and Forget, Icarus, this issue).

N. Murdoch, B. Kenda, T. Kawamura, A. Spiga, P. Lognonné, D. Mimoun, and W. B. Banerdt. Estimations of the Seismic Pressure Noise on Mars Determined from Large Eddy Simulations and Demonstration of Pressure Decorrelation Techniques for the Insight Mission. , 2017. [ bib | DOI | arXiv | ADS link ]

The atmospheric pressure fluctuations on Mars induce an elastic response in the ground that creates a ground tilt, detectable as a seismic signal on the InSight seismometer SEIS. The seismic pressure noise is modeled using Large Eddy Simulations (LES) of the wind and surface pressure at the InSight landing site and a Green's function ground deformation approach that is subsequently validated via a detailed comparison with two other methods: a spectral approach, and an approach based on Sorrells' theory (Sorrells, Geophys. J. Int. 26:71-82, 1971; Sorrells et al., Nat. Phys. Sci. 229:14-16, 1971). The horizontal accelerations as a result of the ground tilt due to the LES turbulence-induced pressure fluctuations are found to be typically 2 - 40 nm/s2 in amplitude, whereas the direct horizontal acceleration is two orders of magnitude smaller and is thus negligible in comparison. The vertical accelerations are found to be 0.1 - 6 nm/s2 in amplitude. These are expected to be worst-case estimates for the seismic noise as we use a half-space approximation; the presence at some (shallow) depth of a harder layer would significantly reduce quasi-static displacement and tilt effects.

We show that under calm conditions, a single-pressure measurement is representative of the large-scale pressure field (to a distance of several kilometers), particularly in the prevailing wind direction. However, during windy conditions, small-scale turbulence results in a reduced correlation between the pressure signals, and the single-pressure measurement becomes less representative of the pressure field. The correlation between the seismic signal and the pressure signal is found to be higher for the windiest period because the seismic pressure noise reflects the atmospheric structure close to the seismometer.

In the same way that we reduce the atmospheric seismic signal by making use of a pressure sensor that is part of the InSight Auxiliary Payload Sensor Suite, we also the use the synthetic noise data obtained from the LES pressure field to demonstrate a decorrelation strategy. We show that our decorrelation approach is efficient, resulting in a reduction by a factor of 5 in the observed horizontal tilt noise (in the wind direction) and the vertical noise. This technique can, therefore, be used to remove the pressure signal from the seismic data obtained on Mars during the InSight mission.

M. Mendillo, C. Narvaez, M. F. Vogt, M. Mayyasi, P. Mahaffy, M. Benna, L. Andersson, B. Campbell, F. Němec, Y. J. Ma, J.-Y. Chaufray, F. Leblanc, F. Gonzalez-Galindo, M. Á. Lopez-Valverde, F. Forget, and B. Jakosky. MAVEN and the total electron content of the Martian ionosphere. Journal of Geophysical Research (Space Physics), 122:3526-3537, 2017. [ bib | DOI | ADS link ]

Model studies of the ionosphere of Mars under daytime conditions reveal that for solar zenith angles of 0deg-40deg, the shapes and magnitudes of the electron density profiles Ne(h) change by only small amounts. This suggests that midday observations made by MAVEN instruments along slanted orbit segments can be used to represent vertical profiles. The total electron content (TEC), defined as the height integral of Ne(h), is a measure of the cold plasma reservoir of the Martian ionosphere. During MAVEN's Deep-Dip-#2 campaign of April 2015, observations of total ion density by Neutral Gas and Ion Mass Spectrometer and electron density by Langmuir Probe and Waves from periapse ( 130 km) to 400 km were used to form TECtopsidevalidated by independent diagnostics and models. Orbit-by-orbit changes in topside TEC were then used to assess the magnitudes of plasma escape associated with both large and small changes in the topside slope of Ne(h)called an “ionopause episode.” The TEC changes due to these episodes, generalized to a global change, resulted in an escape flux of 3-6 × 1024 ions/s, an escape rate consistent with prior observation by Phobos-2, Mars Express, and MAVEN's own in situ studies.

M. Lefèvre, A. Spiga, and S. Lebonnois. Three-dimensional turbulence-resolving modeling of the Venusian cloud layer and induced gravity waves. Journal of Geophysical Research (Planets), 122:134-149, 2017. [ bib | DOI | ADS link ]

The impact of the cloud convective layer of the atmosphere of Venus on the global circulation remains unclear. The recent observations of gravity waves at the top of the cloud by the Venus Express mission provided some answers. These waves are not resolved at the scale of global circulation models (GCM); therefore, we developed an unprecedented 3-D turbulence-resolving large-eddy simulations (LES) Venusian model using the Weather Research and Forecast terrestrial model. The forcing consists of three different heating rates: two radiative ones for solar and infrared and one associated with the adiabatic cooling/warming of the global circulation. The rates are extracted from the Laboratoire de Météorlogie Dynamique Venus GCM using two different cloud models. Thus, we are able to characterize the convection and associated gravity waves in function of latitude and local time. To assess the impact of the global circulation on the convective layer, we used rates from a 1-D radiative-convective model. The resolved layer, taking place between 1.0 × 105 and 3.8 × 104 Pa (48-53 km), is organized as polygonal closed cells of about 10 km wide with vertical wind of several meters per second. The convection emits gravity waves both above and below the convective layer leading to temperature perturbations of several tenths of kelvin with vertical wavelength between 1 and 3 km and horizontal wavelength from 1 to 10 km. The thickness of the convective layer and the amplitudes of waves are consistent with observations, though slightly underestimated. The global dynamics heating greatly modify the convective layer.

G. Gilli, S. Lebonnois, F. González-Galindo, M. A. López-Valverde, A. Stolzenbach, F. Lefèvre, J. Y. Chaufray, and F. Lott. Thermal structure of the upper atmosphere of Venus simulated by a ground-to-thermosphere GCM. Icarus, 281:55-72, 2017. [ bib | DOI | ADS link ]

We present here the thermal structure of the upper atmosphere of Venus predicted by a full self-consistent Venus General Circulation Model (VGCM) developed at Laboratoire de Météorologie Dynamique (LMD) and extended up to the thermosphere of the planet. Physical and photochemical processes relevant at those altitudes, plus a non-orographic GW parameterisation, have been added. All those improvements make the LMD-VGCM the only existing ground-to-thermosphere 3D model for Venus: a unique tool to investigate the atmosphere of Venus and to support the exploration of the planet by remote sounding. The aim of this paper is to present the model reference results, to describe the role of radiative, photochemical and dynamical effects in the observed thermal structure in the upper mesosphere/lower thermosphere of the planet. The predicted thermal structure shows a succession of warm and cold layers, as recently observed. A cooling trend with increasing latitudes is found during daytime at all altitudes, while at nighttime the trend is inverse above about 110 km, with an atmosphere up to 15 K warmer towards the pole. The latitudinal variation is even smaller at the terminator, in agreement with observations. Below about 110 km, a nighttime warm layer whose intensity decreases with increasing latitudes is predicted by our GCM. A comparison of model results with a selection of recent measurements shows an overall good agreement in terms of trends and order of magnitude. Significant data-model discrepancies may be also discerned. Among them, thermospheric temperatures are about 40-50 K colder and up to 30 K warmer than measured at terminator and at nighttime, respectively. The altitude layer of the predicted mesospheric local maximum (between 100 and 120 km) is also higher than observed. Possible interpretations are discussed and several sensitivity tests performed to understand the data-model discrepancies and to propose future model improvements.

C. Genthon, L. Piard, E. Vignon, J.-B. Madeleine, M. Casado, and H. Gallée. Atmospheric moisture supersaturation in the near-surface atmosphere at Dome C, Antarctic Plateau. Atmospheric Chemistry & Physics, 17:691-704, 2017. [ bib | DOI | ADS link ]

Supersaturation often occurs at the top of the troposphere where cirrus clouds form, but is comparatively unusual near the surface where the air is generally warmer and laden with liquid and/or ice condensation nuclei. One exception is the surface of the high Antarctic Plateau. One year of atmospheric moisture measurement at the surface of Dome C on the East Antarctic Plateau is presented. The measurements are obtained using commercial hygrometry sensors modified to allow air sampling without affecting the moisture content, even in the case of supersaturation. Supersaturation is found to be very frequent. Common unadapted hygrometry sensors generally fail to report supersaturation, and most reports of atmospheric moisture on the Antarctic Plateau are thus likely biased low. The measurements are compared with results from two models implementing cold microphysics parameterizations: the European Center for Medium-range Weather Forecasts through its operational analyses, and the Model Atmosphérique Régional. As in the observations, supersaturation is frequent in the models but the statistical distribution differs both between models and observations and between the two models, leaving much room for model improvement. This is unlikely to strongly affect estimations of surface sublimation because supersaturation is more frequent as temperature is lower, and moisture quantities and thus water fluxes are small anyway. Ignoring supersaturation may be a more serious issue when considering water isotopes, a tracer of phase change and temperature, largely used to reconstruct past climates and environments from ice cores. Because observations are easier in the surface atmosphere, longer and more continuous in situ observation series of atmospheric supersaturation can be obtained than higher in the atmosphere to test parameterizations of cold microphysics, such as those used in the formation of high-altitude cirrus clouds in meteorological and climate models.