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Introduction:

The DRAMATIC (Dynamics, RAdiation, MAte-
rial Transport, and their mutual Interactions) Mars
Global Climate Model (MGCM) has long been used
to investigate atmospheric dynamics and material
transport on Mars [1-3], including the facilitation of
the collaborations with observational data and future
mission plannings [4,5]. Recently it reproduced the
interactions between the atmosphere and subsurface
water by implementing the adsorption properties of
regolith [6].

However, about the atmopheric water cycle, it
only had a cloud formation scheme with simple esti-
mations of number density and size of dust nuclei [6-
8], which was not interactive with realistic dust cycle.
Now we have considerably updated the water cycle
scheme in the DRAMATIC MGCM, newly imple-
menting the realistic cloud microphysics interactive
with the dust cycle for 6 particle sizes. Here we show
several quick results with the new scheme, and in the
presentation we plan to show further discussions in-
cluding the comparisons with the observational data.

This development will contribute to the atmos-
pheric observations of Mars by the Japanese mission
MMX (Martial Moons eXplanation) [9] launching in
2026. Moreover, it should link to the improvements
of atmospheric simulations of Mars in various ages,
for the investigations of the evolution of its water en-
vironment and climate.

Methods:

The current version of the MGCM is based on MI-
ROCE6 [10], and we have updated the vertical layers
to use a hybrid sigma-pressure coordinate. Now we
have implemented a dust cycle featuring 6 particle
mode radii (0.0625, 0.125, 0.25, 0.5, 1, and 2 um).
Dust is injected from the surface according to three-
dimensional scenarios (latitude, longitude, and time)
based on past observations of opacity [11,12], with
the ratios of each mode radius consistently with past
observations (effective radius of 1.6 pm and variance
of 0.2 [13]). The airborne dust also serves as nuclei
for the formation of water ice clouds. The microphys-
ics governing the formation of water ice clouds is
newly implemented based on the theory of heteroge-
neous nucletion with spherical solid nuclei [14-16], as
has been implemented in a preceding work [17]. The
sources of atmospheric water are polar ice caps in

both hemispheres, defining regions with the daytime
thermal inertia of >1000 J m? K-! 52 in the dataset
[18].

We also have newly implemented the radiative ef-
fects of water ice clouds, CO: ice clouds, and water
vapor, as well as those of CO, gas and dust particles
classically implemented. Atmospheric raditation is
calculated with 26 bands between 10 and 115000
cm’! in wavenumber (0.087 and 1000 um in wave-
length), and the simulated opacities shown in Results
represent the outputs at corresponding bands.

Here we show the results with the horizontal res-
olution of T42 (~2.8° for both latitude and longitude),
and vertical 34 layers with the top altitude of ~87 km
(~0.1 Pa). The “climatology” dust opacity scenario
[19] is implemeneted.

Results:

Figure 1 shows the annual-latitudinal cross sec-
tions of simulated daytime (2pm) water vapor column
density (in pr.um) and water ice cloud column opacity
in infrared (at 825 cm™) in the 15th year from isother-
mal and dry (no water vapor/ice in the atmosphere)
state. Those results well reproduce the MGS/TES ob-
servation [20] in overall. The water ice opacity in
near-infrared (at 3.4 pm corresponding to the
MRO/CRISM observation [21]) is almost the same as
in infrared, and the opacity in ultravioler (at 320 nm
corrsponding to the MRO/MARCI observation [22])
is slightry smaller than in infrared/near-infrared.

Figures 2, 3, and 4 show the latitude-altitude cross
sections of simulated daytime (3pm) and nighttime
(3am) temperature, water ice cloud opacity at 843
cm’!, and dust opacity at 463 cm’!, respectively. Those
results well reproduce the MRO/MCS observation
[23].

Figures 5 and 6 show the simulated latitude-alti-
tude cross sections of the mean radius and variance of
the water ice clouds and dust particles, respectively.
Those are quick results, and the detailed investiga-
tions of the particle size distributions of water ice and
airborne dust will be shown in the presentation.
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Figure 1: Seasonal and latitudinal distributions of
simulated (a) daytime (2pm) water vapor column den-
sity (in pr.pm) and (b) water ice cloud column opacity

at 825 cm’™.
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Figure 2: Latitude-altitude cross sections of simulated
zonal-mean temperature (in K) for (a) daytime (3pm)
at L+~90° (northern summer solstice), (b) nighttime
(3am) at L=90°, (c) daytime at L;~=180° (northern au-
tumn equinox), and (d) nighttime at L;=180°.
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Figure 3: Same as Figure 2, except logio of water ice
cloud opacity at 843 cm™! (in km™).
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Figure 4: Same as Figure 2, except logio of dust opac-

ity at 463 cm™! (in km™).
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Figure 5: Latitude-altitude cross sections of simulated
zonal-mean water ice cloud properties: (a) mean ra-
dius (in pm) at L=90°, (b) variance (x107°) at L=90°,
(c) mean radius at L~180°, and (d) variance at
L~180°.
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Figure 6: Same as Figure 5, except airborne dust.
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