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Introduction:   

The DRAMATIC (Dynamics, RAdiation, MAte-

rial Transport, and their mutual Interactions) Mars 

Global Climate Model (MGCM) has long been used 

to investigate atmospheric dynamics and material 

transport on Mars [1-3], including the facilitation of 

the collaborations with observational data and future 

mission plannings [4,5]. Recently it reproduced the 

interactions between the atmosphere and subsurface 

water by implementing the adsorption properties of 

regolith [6].  

However, about the atmopheric water cycle, it 

only had a cloud formation scheme with simple esti-

mations of number density and size of dust nuclei [6-

8], which was not interactive with realistic dust cycle. 

Now we have considerably updated the water cycle 

scheme in the DRAMATIC MGCM, newly imple-

menting the realistic cloud microphysics interactive 

with the dust cycle for 6 particle sizes. Here we show 

several quick results with the new scheme, and in the 

presentation we plan to show further discussions in-

cluding the comparisons with the observational data.  

This development will contribute to the atmos-

pheric observations of Mars by the Japanese mission 

MMX (Martial Moons eXplanation) [9] launching in 

2026. Moreover, it should link to the improvements 

of atmospheric simulations of Mars in various ages, 

for the investigations of the evolution of its water en-

vironment and climate.  

 

Methods:   

The current version of the MGCM is based on MI-

ROC6 [10], and we have updated the vertical layers 

to use a hybrid sigma-pressure coordinate. Now we 

have implemented a dust cycle featuring 6 particle 

mode radii (0.0625, 0.125, 0.25, 0.5, 1, and 2 µm). 

Dust is injected from the surface according to three-

dimensional scenarios (latitude, longitude, and time) 

based on past observations of opacity [11,12], with 

the ratios of each mode radius consistently with past 

observations (effective radius of 1.6 µm and variance 

of 0.2 [13]). The airborne dust also serves as nuclei 

for the formation of water ice clouds. The microphys-

ics governing the formation of water ice clouds is 

newly implemented based on the theory of heteroge-

neous nucletion with spherical solid nuclei [14-16], as 

has been implemented in a preceding work [17]. The 

sources of atmospheric water are polar ice caps in 

both hemispheres, defining regions with the daytime 

thermal inertia of >1000 J m-2 K-1 s-1/2 in the dataset 

[18]. 

We also have newly implemented the radiative ef-

fects of water ice clouds, CO₂ ice clouds, and water 

vapor, as well as those of CO2 gas and dust particles 

classically implemented. Atmospheric raditation is 

calculated with 26 bands between 10 and 115000  

cm-1 in wavenumber (0.087 and 1000 µm in wave-

length), and the simulated opacities shown in Results 

represent the outputs at corresponding bands. 

Here we show the results with the horizontal res-

olution of T42 (~2.8° for both latitude and longitude), 

and vertical 34 layers with the top altitude of ~87 km 

(~0.1 Pa). The “climatology” dust opacity scenario 

[19] is implemeneted. 

 

Results:   

Figure 1 shows the annual-latitudinal cross sec-

tions of simulated daytime (2pm) water vapor column 

density (in pr.µm) and water ice cloud column opacity 

in infrared (at 825 cm-1) in the 15th year from isother-

mal and dry (no water vapor/ice in the atmosphere) 

state. Those results well reproduce the MGS/TES ob-

servation [20] in overall. The water ice opacity in 

near-infrared (at 3.4 µm corresponding to the 

MRO/CRISM observation [21]) is almost the same as 

in infrared, and the opacity in ultravioler (at 320 nm 

corrsponding to the  MRO/MARCI observation [22]) 

is slightry smaller than in infrared/near-infrared. 

Figures 2, 3, and 4 show the latitude-altitude cross 

sections of simulated daytime (3pm) and nighttime 

(3am) temperature, water ice cloud opacity at 843  

cm-1, and dust opacity at 463 cm-1, respectively. Those 

results well reproduce the MRO/MCS observation 

[23]. 

Figures 5 and 6 show the simulated latitude-alti-

tude cross sections of the mean radius and variance of 

the water ice clouds and dust particles, respectively. 

Those are quick results, and the detailed investiga-

tions of the particle size distributions of water ice and 

airborne dust will be shown in the presentation. 
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Figure 1: Seasonal and latitudinal distributions of 

simulated (a) daytime (2pm) water vapor column den-

sity (in pr.µm) and (b) water ice cloud column opacity 

at 825 cm-1. 

 

 
Figure 2: Latitude-altitude cross sections of simulated 

zonal-mean temperature (in K) for (a) daytime (3pm) 

at Ls=90° (northern summer solstice), (b) nighttime 

(3am) at Ls=90°, (c) daytime at Ls=180° (northern au-

tumn equinox), and (d) nighttime at Ls=180°. 

 

 
Figure 3: Same as Figure 2, except log10 of water ice 

cloud opacity at 843 cm-1 (in km-1). 

 

 
Figure 4: Same as Figure 2, except log10 of dust opac-

ity at 463 cm-1 (in km-1). 

 



 
Figure 5: Latitude-altitude cross sections of simulated 

zonal-mean water ice cloud properties: (a) mean ra-

dius (in µm) at Ls=90°, (b) variance (×10-6) at Ls=90°, 

(c) mean radius at Ls=180°, and (d) variance at 

Ls=180°. 

 

 
Figure 6: Same as Figure 5, except airborne dust. 
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