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Introduction

The dynamics of Mars’ upper atmosphere play a key role
in controlling the transport and escape of atmospheric
gases. These processes are crucial for understanding
how Mars’ atmosphere has evolved over time and what
that means for the planet’s past habitability1,2. Mea-
surements of neutral species in the upper atmosphere
have revealed unexpected fluctuations in density3,4,5.
These variations cannot be fully explained by current
model simulations, even when both internal and external
forcings are carefully included3,4. Orographic gravity
waves generally have limited influence above the middle
atmosphere6. As a result, recent research has shifted to-
ward understanding the impact of non-orographic grav-
ity waves3,7,8,9. Turbulence generated by these waves is
now considered a likely cause of the observed variability
in upper atmospheric densities2,3,4,5.

We introduce a new way to model mixing caused
by non-orographic gravity waves in the Mars Planetary
Climate Model. This approach links wave propagation
and turbulence using the same set of assumptions, form-
ing a unified framework. It gives a surface-to-exosphere
parameterization of mixing through an eddy diffusion
coefficient. Simulations show that the coefficient ranges
from 104 to 109 cm2 s−1. The turbopause lies between
70 and 140 km, depending on the season. While temper-
atures change only slightly, the mixing strongly affects
the distribution of tracers in the upper atmosphere. Re-
sults agree well with data from Mars Climate Sounder
and NGIMS. This scheme shows how gravity wave-
driven turbulence can boost vertical transport and help
control upper atmospheric processes like tracer escape.

Methodologies and Assumptions

Early studies proposed that turbulence in the upper at-
mosphere can result from localized unstable layers cre-
ated by gravity wave saturation7. Once turbulence is
triggered in these regions, it acts to suppress further in-
stability. This idea was later formalized by assuming
that turbulence fully eliminates instability in thin layers
around the wave saturation level|a concept we refer to as
the Non-Superadiabatic Principle (NSP).

The NSP has been useful in linking turbulence gen-
eration to wave saturation, but it has limitations. Specif-

ically, it may overestimate turbulence above the satura-
tion level and fails to fully account for turbulence ob-
served below it.

We revisit the NSP without changing the original
formalism, but with a more constrained interpretation
based on four key points:

(a) Turbulence is generated by instabilities arising
from the wave’s momentum deposition into the mean
flow, as seen in temperature fluctuations. This implies
that eddy diffusivity is proportional to the divergence of
wave momentum.

(b) As a result, turbulence should occur both above
and below the saturation level, maintaining vertical sym-
metry.

(c) The turbulence acts to suppress further instability,
preventing excessive temperature gradients from form-
ing during wave momentum deposition.

(d) The maximum turbulence occurs at the satura-
tion level, where the momentum transfer from the wave
to the mean flow is strongest.

Additionally, the impact of gravity wave-induced
eddy diffusion is typically represented as a linear damp-
ing process starting at the wave saturation level and ex-
tending upward7. This approach treats diffusion as a
form of dissipation that affects both the energy and mo-
mentum of the mean flow7,8.

Formalism and Results

The governing equations under the assumptions of shal-
low, inviscid, adiabatic, non-rotating, steady, hydro-
static, incompressible atmosphere may be linearized as,

ξ = ξ̄︸︷︷︸
mean

+ ξ′︸︷︷︸
pertubation

(1)

∀ξ ∈ [u, v, w, ρ, θ, T, p]. The wave solution to the pertur-
bation ξ′ in (1) may be written as,

ξ′ = ξ̂︸︷︷︸
amplitudes

ei(kx+ly+mz−ωt) (2)

The governing equations in amplitude ξ̂ form (i.e., po-
larized equations) can be used to derive the Taylor-
Goldstein (TG) equation. The solution ξ̂ of TG is used
to describe the wave.



The Taylor-Goldstein equation in the wave ampli-
tude space ξ̂ presents as follows3,7,8,
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Here ŵ = ikξ̂ represents the amplitude of gravity wave;
i2 = −1; k⃗ = (k, l) is the horizontal wavenumber; k⃗[2] :=
(k2, l2) ; z for altitude; ρ̄ the background density; N2 for
Brunt-Väisälä frequency; Ω = k⃗(k⃗/(k, l)c− (ū, v̄)) is the
intrinsic frequency with Doppler shift, with c the phase
speed and ū (v̄) background zonal (meridional) velocity.

Amusing the background density ρ̄ = ρ̄r exp(−z/H),
the second term of the right side of equation (3) may be
eliminated by giving ŵ a factor ez/2H , i.e., ŵez/2H . The
vertical wavenumber m2

r = k⃗[2]N2/Ω2 dominates the
terms inside the bracket of equation (3). The perturba-
tions w′

j for a monochromatic wave j in (2) yields,

w′
j = ŵj(z) e

z/2H︸ ︷︷ ︸
ρ(z)

ei(kjx+ljy+mjz−ωjt) (4)

The gravity waves are naturally stochastic. In prac-
tice, we parameterize these waves using wave ensem-
bles (w′ =

∑M
j=1 Cjw

′
j) that include a few or tens of

monochromatic harmonics with random wavenumbers,
phase velocities, and momenta.

The approximation solution to (3) for a slowly vary-
ing m2 is termed WKB approximation,

ŵ(z) ≈ A(z)|mr|−1/2exp
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It is also written in an iteration form one layer (ll) to
another (ll + 1),
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By considering critical layers, viscosity damping, (gravity
wave induced) turbulence damping, and saturation, the
wave amplitude ŵ reads,
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, ŵj,s︸︷︷︸

ST

}

(7)

where µ∗ = µD̄j
eddy, D̄j

eddy is the averaged eddy diffu-
sion coefficient. The wave EP-flux is defined as 3,8,9,
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mj(zr)|ŵj(zr)|2 (8)

Inserting (7) to (8), yields,
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The divergence of the EP-flux of the ensemble is added to
the mean flow in terms of the first-order Auto Regression
algorithm (AR-1),(
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The unknown terms in (7) include turbulence damp-

ing and saturation. They can be solved by applying
NSP to the energy equation. According to the energy
equation, the wave-induced vertical temperature gradi-
ent follows,
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At the saturation altitude, the saturated turbulent vertical
wavenumber mi,s eliminates the exponential increase of
(11), which returns,
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Equation (12) implies that the turbulence is at its max-
imum at zb, and thus the absolute temperature gradient
in (11) is forced to equal the environmental lapse rate Γ.
That is,
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, z = zb (13)

Implementing (13) and (5) into (8) can get the saturated
EP-flux in (9, right side inside the bracket).

The turbulence contributes a dissipation term to the
momentum and energy equation7,

Dj
eddy

∂

∂z2
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ˆ̄u

δT̂
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= −m2

rD
j
thermal

{
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(14)
Here the Prandtl number equals 1. By the relationship
between ci and mi, we have,

mi =
N |⃗k|m2

rD
j
eddy

Ω2
, z ≥ zb (15)

The Dj
eddy can be derived using (12), (13), (5), (8), and

empirical equations5.
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Figure 1: Monthly-averaged zonal averaged Deddy ( cm2 s−1, upper panels) and zonal drags (m s−1 sol−1, lower panels) during
clear-sky (Ls 60◦-90◦ ) and dusty seasons (240◦-270◦), MY32. Note that the Deddy is plotted in log10 and the contour lines of the
drags are nonlinear.

By citing NSP and observations in the lower and middle atmosphere, the eddy coefficient for a given monochromatic
wave follows,

Dj
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(16)

We use three tunable parameters: the effective mixing factor αeff = 0.1, the mixing saturation factor Smix = 0.1, and
the diffusion decay rate βdiff = 1.5. Equation (16) applies across the saturation altitude zb, where the eddy diffusivity
is set to Dj

eddy(zb). At this level, wave-induced mixing reaches its peak (NSP-d). Above zb, the mixing decreases
with the divergence of wave momentum (NSP-a). Below zb, it also decreases from the peak value (NSP-a). The
divergence of wave momentum above zb is easy to evaluate, since the Eliassen{Palm (EP) flux is already included in
the non-orographic gravity wave (GW) schemes, as shown in Equation (7).

Figure 1 shows the total diffusion coefficient,
∑8

j=1 D
j
eddy. Simulations from the Mars PCM indicate that wave-

driven momentum can generate eddy diffusion coefficients ranging from 106 to 107 cm2 s−1 at pressures between 100

and 10−4 Pa during clear-sky seasons. During dusty seasons, this value increases to 107-108 cm2 s−1, and in some
cases can reach up to 109 cm2 s−1. This enhancement is linked to stronger wave momentum and higher wave-breaking
altitudes. Mars has a variable turbopause, located between 70 and 140 km depending on latitude and season. This
highlights the critical role of gravity wave-induced turbulence in atmospheric escape processes.
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