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Introduction:   

In contemporary deep space exploration, Mars 

has emerged as a prime target, owing to its proximity 

and Earth-like qualities. Currently, Martian rovers 

are the most advanced technology for Mars explora-

tion, and are expected to play an important role in 

future Mars missions. However, the severe condi-

tions of the Martian atmosphere pose great challeng-

es to the Martian rovers, making accurate Martian 

weather forecast a dominant research objective.  

Even though the Martian atmosphere shares 

much similarities with Earth atmosphere1,2, its pre-

dictability might be poles apart from common senses 

on Earth. Since Lorenz’s work in the 1960s, scien-

tists have come to recognize that for Earth atmos-

phere, small initial errors will grow fast and there 

exists two-week predictability limit for weather fore-

casts3–9. Nevertheless, there has not yet been a con-

sensus reached on Martian atmosphere predictability. 

Newmann et al. showed that the Martian atmosphere 

is remarkably predictable during Northern Hemi-

sphere summer, and the errors only grow rapidly in 

winter10, but some other studies argued that positive 

error growth rate persists through most time of the 

year11,12. Clearly, the predictability limit of Martian 

atmosphere remains open to discussion, and there is 

an urgent need to reveal more valuable insights on 

the predictability of Martian atmosphere.  

Here, we disclose a season-dependent weather 

predictability barrier (S-WPB) phenomenon in Mar-

tian atmosphere by applying the bred vector (BV) 

method, where the BVs represent the unstable modes 

in the Martian atmosphere5,6,10,13. The S-WPB is re-

ferred to as a phenomenon that initial temperature 

errors are most likely to exhibit significant growth 

when performing weather forecast experiments dur-

ing particular seasons.  

In this study, the LMD Mars PCM model is used. 

This model reasonably reproduces realistic Martian 

atmospheric fields including temperature, wind and 

water cycles, etc., and has been extensively applied 

in Martian atmosphere research over the past dec-

ades14–19. Furthermore, this S-WPB is also indicated 

by the Ensemble Mars Atmosphere Reanalysis Sys-

tem (EMARS) reanalysis data20 (See Figure 1). It is 

therefore quite plausible that the S-WPB phenome-

non will occur in realistic predictions of Martian 

atmosphere, though currently no operational Martian 

weather forecasting system produces publicly avail-

able prediction data. 

 

 
Figure 1: Spatiotemporal variability of EMARS tempera-

ture standard deviation across different pressure levels. 

Based on EMARS v1.0 reanalysis, zonal mean tempera-

ture standard deviations across MY 26 and MY 29-32 are 

computed (excluding global dust storm years and years 

with limited observations from MY 25 to MY 32). The 

pressure levels are labeled above each panel. 

 

Methods For Quantifying Predictability: 

Error size and growth rate. In current study, the 

size of errors (both for initial errors and forecast er-

rors) is measured by the global temperature RMSE, 

weighted by the grid air mass. The size of initial 

errors is selected as 1 K. As the growing of small 

error in short period is assumed to follow exponen-

tial rule10–12, the error growth rate can be calculated 

as the logarithm of the ratio of the forecast error size 

to the initial error size. 

Bred vector method. The bred vector method is 

proposed to identify the growing error mode in at-

mospheric models5,6. It is centered on the idea that 

the errors will grow in the unstable direction while 

shrink in the stable direction, and hence the fast-

growing mode is developed through this breeding 

procedure. The diagram shown in Figure 2 illustrates 

how bred vector is obtained through the forecast-

rescaling cycles in current study, focusing on the 

initial error growth. 

 



 

  
Figure 2: The bred vector procedure diagram. At the be-

ginning of the procedure, randomly generated initial errors 

are superimposed on the initial field. After integrating for a 

bred cycle, the forecast error size is calculated and the 

error is scaled back to the original size, which is then su-

perimposed on initial fields at next step for the next cycle. 

 

The S-WPB Phenomenon: 

The time series of the global Martian atmospher-

ic temperature field are obtained through integrating 

the model initialized from the available Martian 

Climate Database (MCD) restart data on equinoxes 

and solstices across MY 25 to MY 32 with realistic 

dust scenario forcing14,21,22. These time series are 

treated as the reference states to be forecasted, while 

our weather forecast experiments are done by impos-

ing initial temperature errors on these reference 

states and then integrating the model forwards.  

As Figure 3 shows, larger positive error growth 

occurs when the initial errors characterized by BVs 

are imposed during both late summer and early 

spring, indicating that the Martian atmospheric tem-

perature forecasts tend to undergo both summer-

WPB and spring-WPB. Further investigation reveals 

that the WPB occurrence particularly depends on 

specific season, geographical location and specific 

initial error pattern, while randomly generated errors 

lack these characteristics and fails to grow. 

Figure 3: The growth rate of the errors derived by BVs and 

RPs for the forecasts of global temperatures from MY 25 

to MY 32. The growth rate is calculated from the Root-

Mean-Square Error (RMSE) of the global temperature 

field. Blue dots represent the growth rate of BV errors 

spanning a time interval of 6 Martian hours or 0.25 sol, 

while orange dots denote those of RP errors during the 

same time interval. The blue and orange lines are respec-

tively derived by applying a 15-sol average, highlighting 

the seasonal variation features. The vertical black dashed 

lines mark the equinoxes and solstices when model inte-

gration initializes with MCD restart data as well as when 

breeding procedure starts. Horizontal thick red line serves 

as a reference of zero value. 

 

The Environmental Condition For S-WPB: 

In-depth diagnosis reveals that the error growth is 

sensitive to the saturated water vapor in polar re-

gions, where water ice-radiation feedback takes ef-

fect. To quantify this environmental condition, we 

propose a novel “condensation potential” index to 

quantify the amount of water ice that condenses if 

the atmosphere encounters certain extent of cooling. 

Figure 4 illustrates the spatiotemporal distribution of 

the condensation potential index and relevant fields, 

using MY 25 as a representative year. It is clear that 

large condensation potential occurs in late summer 

and early spring, the same season as WPB. 

Other season and geographical locations that not 

undergo WPB generally possess little condensation 

potential. For these cases, two distinct atmospheric 

regimes are identified. The first kind typically occurs 

in warm regions and seasons. For this kind of state, 

the water vapor is sufficient, but the temperature is 

rather warm, resulting in low saturation ratio and 

little water vapor condenses when cooling occurs. 

The second kind typically occurs in cold regions and 

seasons, where the saturation ratio is usually high but 

the total amount of water vapor that can condense is 

deficient. Furthermore, the seasonal asymmetry of S-

WPB phenomenon, as spring-WPB is shorter and 

weaker compared to the summer-WPB, can be ex-

plained by the much warmer atmosphere when Mars 

is around the perihelion. 

 
Figure 4: The spatiotemporal distribution of the condensa-

tion potential index and corresponding fields in the refer-

ence state as a function of latitude and solar longitude. MY 

25 zonally averaged fields at 350 Pa are shown as repre-

sentative examples. The dotted area around the South Pole 

marks corresponding topography where surface pressure is 

below 350 Pa. From left to right and top to bottom: con-

densation potential, water vapor, water vapor saturation 

ratio, temperature. 

 

Discussion:   

The radiative effect of water ice cloud in the 

Martian atmosphere has been prioritized in recent 

studies16,23–25, and our study confirms that despite its 

low abundance, water vapor exerts a significant radi-

ative effect on the Martian atmospheric predictability, 

in terms of temperature. It is also certainly noted that 

for bringing the temperature simulation closer to real 

Martian atmosphere, the model used in present study 

keeps dust distribution prescribed by realistic data, 

and does not describe the feedback between dust, 

water and atmospheric motion. Certainly, it is ex-

pected that future studies adopting models with fully 



interactive dust scheme may reveal dust-related in-

stabilities both during dust storm seasons and in rel-

evant locations2,26.  

In any case, given the limited spatiotemporal 

coverage of Martian atmospheric observations, cur-

rent Martian atmospheric models remain the first 

approximation, which provides valuable insights of 

Martian atmospheric predictability. On account of 

the S-WPB phenomenon, for the smooth running of 

affected Mars exploration missions in future, further 

measures like targeted observation are required to 

address the negative impacts of the S-WPB phenom-

enon. Moreover, as water and atmosphere are the 

primary conditions for the existence of life, similar 

phenomenon may also be widely present on various 

habitable terrestrial planets throughout the universe. 

Hence, uncovering the mystery of the Martian at-

mospheric predictability also enhances our under-

standing about potential weather predictability char-

acteristics on habitable planets. 

 

Future Work: 

While BVs represent unstable modes from past 

data, their ability to represent future forecasting un-

certainties is limited. To tackle this problem, we em-

ploy the conditional nonlinear optimal perturbation 

(CNOP) method proposed by Mu et al. in 200327. 

The CNOP represents the initial error that causes 

maximum forecast error, and is obtained through 

solving a nonlinear optimization problem. Consider 

the following equations which outline the evolution 

of the atmospheric system: 

∂tU = F(U(x,t)), U(t=0) = u0, 
where U represents atmospheric variables like tem-

perature, wind and tracers. This system defines a 

unique evolution trajectory starting from the initial 

state u0 to the forecast state uT at time T, which can 

be denoted formally with the nonlinear propagator M: 

MT(u0) = uT. 

Our aim is to find the optimal initial error δu0 

which induces largest forecast error δuT at time T, 

but the initial error must be constrained in size for it 

to remain relevant to practical forecasting. Hence, 

the optimization problem can be described as follows: 

δu0 = arg max{||MT(u0+δu0) - MT(u0)||; ||δu0|| ≤ δ0}. 

Traditionally, this optimization problem is solved 

numerically by the combination of an adjoint model 

and optimization algorithms. The former provides 

gradient while the latter searches for the optimum. 

Since the LMD Mars PCM lacks an adjoint model 

currently, we propose an experience-guided-basis 

spectral projected gradient (EGB-SPG) for the 

CNOP calculation, which contains a “self-learning” 

module that can acquire knowledge comprehensively   

from historical optimization results via SPG optimi-

zation algorithms28, achieving reasonable results 

with minimal computational cost. It is expected that 

the CNOP approach will uncover more valuable in-

sights for the predictability of the Martian atmos-

phere. 
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